Как умножить дробь на целое число правило

Содержание:

Умножение десятичных дробей

Умножение десятичных дробей происходит в три этапа.

Десятичные дроби записывают в столбик и умножают как обыкновенные числа.

Считаем количество знаков после запятой у первой десятичной дроби и у второй. Их количество складываем.

В полученном результате отсчитываем справа налево столько же цифр, сколько получилось их в пункте выше и ставим запятую.

Как умножать десятичные дроби

Записываем десятичные дроби в столбик и умножаем их как натуральные числа, не обращая внимания на запятые. То есть 3,11 мы рассматриваем как 311 , а 0,01 как 1 .

Получили 311 . Теперь считаем количество знаков (цифр) после запятой у обеих дробей. В первой десятичной дроби два знака и во второй — два. Общее количество цифр после запятых:

Отсчитываем справа налево 4 знака (цифры) у полученного числа. В полученном результате цифр меньше, чем нужно отделить запятой. В таком случае нужно слева приписать недостающее число нулей.

У нас не хватает одной цифры, поэтому приписываем слева один ноль.

При умножении любой десятичной дроби на 10; 100; 1000 и т.д. запятая в десятичной дроби перемещается вправо на столько знаков, сколько нулей стоит после единицы.

  • 70,1 · 10 = 701
  • 0,023 · 100 = 2,3
  • 5,6 · 1 000 = 5 600

Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т.д., надо в этой дроби перенести запятую влево на столько знаков, сколько нулей стоит перед единицей.

Считаем и ноль целых!

  • 12 · 0,1 = 1,2
  • 0,05 · 0,1 = 0,005
  • 1,256 · 0,01 = 0,012 56

math-prosto.ru

Умножение дробей

Умножение обыкновенных дробей рассмотрим в нескольких возможных вариантах.

Умножение обыкновенной дроби на дробь

Это наиболее простой случай, в котором нужно пользоваться следующими правилами умножения дробей.

Чтобы умножить дробь на дробь, надо:

  • числитель первой дроби умножить на числитель второй дроби и их произведение записать в числитель новой дроби;
  • знаменатель первой дроби умножить на знаменатель второй дроби и их произведение записать в знаменатель новой дроби;

Прежде чем перемножать числители и знаменатели проверьте нельзя ли сократить дроби. Сокращение дробей при расчётах значительно облегчит ваши вычисления.

Умножение дроби на натуральное число

Чтобы дробь умножить на натуральное число нужно числитель дроби умножить на это число, а знаменатель дроби оставить без изменения.

Если в результате умножения получилась неправильная дробь, не забудьте превратить её в смешанное число, то есть выделить целую часть.

Умножение смешанных чисел

Чтобы перемножить смешанные числа, надо вначале превратить их в неправильные дроби и после этого умножить по правилу умножения обыкновенных дробей.

Другой способ умножения дроби на натуральное число

Иногда при расчётах удобнее воспользоваться другим способом умножения обыкновенной дроби на число.

Чтобы умножить дробь на натуральное число нужно знаменатель дроби разделить на это число, а числитель оставить прежним.

Как видно из примера, этим вариантом правила удобнее пользоваться, если знаменатель дроби делится без остатка на натуральное число.

math-prosto.ru

Как умножить дробь на целое число правило

I. Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.

Примеры. Выполнить умножение: 1) 1,25·7; 2) 0,345·8; 3) 2,391·14.

Решение.

II. Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение , не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.

Примеры. Выполнить умножение: 1) 18, 2·0,09; 2) 3,2·0,065; 3) 0,54·12,3.

Решение.

III. Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.

Примеры. Выполнить умножение: 1) 3,25·10; 2) 0,637·100; 3) 4,307·1000; 4) 2,04·1000; 5) 0,00031·10000.

Решение.

IV. Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.

Примеры. Выполнить умножение: 1) 28,3·0,1; 2) 324,7·0,01; 3) 6,85·0,01; 4) 6179,5·0,001; 5) 92,1·0,0001.

www.mathematics-repetition.com

Умножение десятичных дробей, правила, примеры, решения.

Переходим к изучению следующего действия с десятичными дробями, сейчас мы всесторонне рассмотрим умножение десятичных дробей. Сначала обговорим общие принципы умножения десятичных дробей. После этого перейдем к умножению десятичной дроби на десятичную дробь, покажем, как выполняется умножение десятичных дробей столбиком, рассмотрим решения примеров. Дальше разберем умножение десятичных дробей на натуральные числа, в частности на 10, 100 и т.д. В заключение поговорим об умножении десятичных дробей на обыкновенные дроби и смешанные числа.

Сразу скажем, что в этой статье мы будем говорить лишь об умножении положительных десятичных дробей (смотрите положительные и отрицательные числа). Остальные случаи разобраны в статьях умножение рациональных чисел и умножение действительных чисел.

Навигация по странице.

Общие принципы умножения десятичных дробей

Обсудим общие принципы, которых следует придерживаться при проведении умножения с десятичными дробями.

Так как конечные десятичные дроби и бесконечные периодические дроби являются десятичной формой записи обыкновенных дробей, то умножение таких десятичных дробей по сути является умножением обыкновенных дробей. Иными словами, умножение конечных десятичных дробей, умножение конечной и периодической десятичных дробей, а также умножение периодических десятичных дробей сводится к умножению обыкновенных дробей после перевода десятичных дробей в обыкновенные.

Рассмотрим примеры применения озвученного принципа умножения десятичных дробей.

Выполните умножение десятичных дробей 1,5 и 0,75 .

Заменим умножаемые десятичные дроби соответствующими обыкновенными дробями. Так как 1,5=15/10 и 0,75=75/100 , то . Можно провести сокращение дроби, после чего выделить целую часть из неправильной дроби , а удобнее полученную обыкновенную дробь 1 125/1 000 записать в виде десятичной дроби 1,125 .

Следует отметить, что конечные десятичные дроби удобно умножать столбиком, об этом способе умножения десятичных дробей мы поговорим в следующем пункте.

Рассмотрим пример умножения периодических десятичных дробей.

Вычислите произведение периодических десятичных дробей 0,(3) и 2,(36) .

Выполним перевод периодических десятичных дробей в обыкновенные дроби:

Тогда . Можно полученную обыкновенную дробь перевести в десятичную дробь:

Если среди умножаемых десятичных дробей присутствуют бесконечные непериодические, то все умножаемые дроби, в том числе конечные и периодические, следует округлить до некоторого разряда (смотрите округление чисел), после чего выполнять умножение полученных после округления конечных десятичных дробей.

Выполните умножение десятичных дробей 5,382… и 0,2 .

Сначала округлим бесконечную непериодическую десятичную дробь, округление можно провести до сотых, имеем 5,382…≈5,38 . Конечную десятичную дробь 0,2 округлять до сотых нет необходимости. Таким образом, 5,382…·0,2≈5,38·0,2 . Осталось вычислить произведение конечных десятичных дробей: 5,38·0,2=538/100·2/10= 1 076/1 000=1,076 .

Умножение десятичных дробей столбиком

Умножение конечных десятичных дробей можно выполнять столбиком, аналогично умножению столбиком натуральных чисел.

Сформулируем правило умножения десятичных дробей столбиком. Чтобы умножить десятичные дроби столбиком, надо:

  • не обращая внимания на запятые, выполнить умножение по всем правилам умножения столбиком натуральных чисел;
  • в полученном числе отделить десятичной запятой столько цифр справа, сколько десятичных знаков в обоих множителях вместе, при этом если в произведении не хватает цифр, то слева нужно дописать нужное количество нулей.

Рассмотрим примеры умножения десятичных дробей столбиком.

Выполните умножение десятичных дробей 63,37 и 0,12 .

Проведем умножение десятичных дробей столбиком. Сначала умножаем числа, не обращая внимания на запятые:

Осталось в полученном произведении поставить запятую. Ей нужно отделить 4 цифры справа, так как в множителях в сумме четыре десятичных знака (два в дроби 3,37 и два в дроби 0,12 ). Цифр там хватает, поэтому нулей слева дописывать не придется. Закончим запись:

В итоге имеем 3,37·0,12=7,6044 .

Вычислите произведение десятичных дробей 3,2601 и 0,0254 .

Выполнив умножение столбиком без учета запятых, получаем следующую картину:

Теперь в произведении нужно отделить запятой 8 цифр справа, так как общее количество десятичных знаков умножаемых дробей равно восьми. Но в произведении только 7 цифр, поэтому, нужно слева приписать столько нулей, чтобы можно было отделить запятой 8 цифр. В нашем случае нужно приписать два нуля:

На этом умножение десятичных дробей столбиком закончено.

Умножение десятичных дробей на 0,1, 0,01, и т.д.

Довольно часто приходится умножать десятичные дроби на 0,1 , 0,01 и так далее. Поэтому целесообразно сформулировать правило умножения десятичной дроби на эти числа, которое следует из рассмотренных выше принципов умножения десятичных дробей.

Итак, умножение данной десятичной дроби на 0,1 , 0,01 , 0,001 и так далее дает дробь, которая получается из исходной, если в ее записи перенести запятую влево на 1 , 2 , 3 и так далее цифр соответственно, при этом если не хватает цифр для переноса запятой, то нужно слева дописать необходимое количество нулей.

Например, чтобы умножить десятичную дробь 54,34 на 0,1 , надо в дроби 54,34 перенести запятую влево на 1 цифру, при этом получится дробь 5,434 , то есть, 54,34·0,1=5,434 . Приведем еще один пример. Умножим десятичную дробь 9,3 на 0,0001 . Для этого нам нужно в умножаемой десятичной дроби 9,3 перенести запятую на 4 цифры влево, но запись дроби 9,3 не содержит такого количества знаков. Поэтому нам нужно в записи дроби 9,3 слева приписать столько нулей, чтобы можно было беспрепятственно осуществить перенос запятой на 4 цифры, имеем 9,3·0,0001=0,00093 .

Заметим, что озвученное правило умножения десятичной дроби на 0,1, 0,01, … справедливо и для бесконечных десятичных дробей. К примеру, 0,(18)·0,01=0,00(18) или 93,938…·0,1=9,3938… .

Умножение десятичной дроби на натуральное число

По своей сути умножение десятичных дробей на натуральные числа ничем не отличается от умножения десятичной дроби на десятичную дробь.

Конечную десятичную дробь умножать на натуральное число удобнее всего столбиком, при этом следует придерживаться правил умножения столбиком десятичных дробей, рассмотренных в одном из предыдущих пунктов.

Вычислите произведение 15·2,27 .

Проведем умножение натурального числа на десятичную дробь столбиком:

При умножении периодической десятичной дроби на натуральное число, периодическую дробь следует заменить обыкновенной дробью.

Умножьте десятичную дробь 0,(42) на натуральное число 22 .

Сначала переведем периодическую десятичную дробь в обыкновенную дробь:

Теперь выполним умножение: . Этот результат в виде десятичной дроби имеет вид 9,(3) .

А при умножении бесконечной непериодической десятичной дроби на натуральное число нужно предварительно провести округление.

Выполните умножение 4·2,145… .

Округлив до сотых исходную бесконечную десятичную дробь, мы придем к умножению натурального числа и конечной десятичной дроби. Имеем 4·2,145…≈4·2,15=8,60 .

Умножение десятичной дроби на 10, 100, …

Довольно часто приходится умножать десятичные дроби на 10, 100, … Поэтому целесообразно подробно остановиться на этих случаях.

Озвучим правило умножения десятичной дроби на 10, 100, 1 000 и т.д. При умножении десятичной дроби на 10, 100, … в ее записи нужно перенести запятую вправо на 1, 2, 3, … цифры соответственно и отбросить лишние нули слева; если в записи умножаемой дроби не хватает цифр для переноса запятой, то нужно дописать необходимое количество нулей справа.

Умножьте десятичную дробь 0,0783 на 100 .

Перенесем в записи дроби 0,0783 на две цифры вправо, при этом получим 007,83 . Отбросив два нуля слева, получаем десятичную дробь 7,38 . Таким образом, 0,0783·100=7,83 .

Выполните умножение десятичной дроби 0,02 на 10 000 .

Чтобы умножить 0,02 на 10 000 , нам нужно перенести запятую на 4 цифры вправо. Очевидно, в записи дроби 0,02 не хватает цифр для переноса запятой на 4 цифры, поэтому допишем несколько нулей справа, чтобы можно было осуществить перенос запятой. В нашем примере достаточно дописать три нуля, имеем 0,02000 . После переноса запятой получим запись 00200,0 . Отбросив нули слева, имеем число 200,0 , которое равно натуральному числу 200 , оно и является результатом умножения десятичной дроби 0,02 на 10 000 .

Озвученное правило справедливо и для умножения бесконечных десятичных дробей на 10, 100, … При умножении периодических десятичных дробей нужно быть аккуратными с периодом дроби, которая является результатом умножения.

Умножьте периодическую десятичную дробь 5,32(672) на 1 000 .

Перед умножением распишем периодическую десятичную дробь как 5,32672672672… , это нам позволит не допустить ошибки. Теперь перенесем запятую вправо на 3 знака, имеем 5 326,726726… . Таким образом, после умножения получается периодическая десятичная дробь 5 326,(726) .

5,32(672)·1 000=5 326,(726) .

При умножении бесконечных непериодических дробей на 10, 100, … нужно предварительно провести округление бесконечной дроби до некоторого разряда, после чего проводить умножение.

Умножение десятичной дроби на обыкновенную дробь или смешанное число

Для умножения конечной десятичной дроби или бесконечной периодической десятичной дроби на обыкновенную дробь или смешанное число, нужно десятичную дробь представить в виде обыкновенной дроби, после чего провести умножение.

Проведите умножение десятичной дроби 0,4 на смешанное число .

Так как 0,4=4/10=2/5 и , то . Полученное число можно записать в виде периодической десятичной дроби 1,5(3) .

При умножении бесконечной непериодической десятичной дроби на обыкновенную дробь или смешанное число, обыкновенную дробь или смешанное число следует заменить десятичной дробью, после чего провести округление умножаемых дробей и закончить вычисления.

Так как 2/3=0,6666… , то . После округления умножаемых дробей до тысячных, приходим к произведению двух конечных десятичных дробей 3,568 и 0,667 . Выполним умножение в столбик:

Полученный результат следует округлить до тысячных, так как умножаемые дроби были взяты с точностью до тысячных, имеем 2,379856≈2,380 .

www.cleverstudents.ru

Умножение обыкновенных дробей: правила, примеры, решения.

Продолжим изучать действия с обыкновенными дробями . Сейчас в центре внимания умножение обыкновенных дробей. В этой статье мы дадим правило умножения обыкновенных дробей, рассмотрим применение этого правила при решении примеров. Также остановимся на умножении обыкновенной дроби на натуральное число. В заключение рассмотрим, как проводится умножение трех и большего количества дробей.

Навигация по странице.

Умножение обыкновенной дроби на обыкновенную дробь

Начнем с формулировки правила умножения обыкновенных дробей: умножение дроби на дробь дает дробь, числитель которой равен произведению числителей умножаемых дробей, а знаменатель равен произведению знаменателей.

То есть, умножению обыкновенных дробей a/b и c/d отвечает формула .

Приведем пример, иллюстрирующий правило умножения обыкновенных дробей. Рассмотрим квадрат со стороной 1 ед. , при этом его площадь равна 1 ед 2 . Разделим этот квадрат на равные прямоугольники со сторонами 1/4 ед. и 1/8 ед. , при этом исходный квадрат будет состоять из 4·8=32 прямоугольников, следовательно, площадь каждого прямоугольника составляет 1/32 долю площади исходного квадрата, то есть, она равна 1/32 ед 2 . Теперь закрасим часть исходного квадрата. Все наши действия отражает рисунок ниже.

Стороны закрашенного прямоугольника равны 5/8 ед. и 3/4 ед. , значит, его площадь равна произведению дробей 5/8 и 3/4 , то есть, ед 2 . Но закрашенный прямоугольник состоит из 15 «маленьких» прямоугольников, значит, его площадь равна 15/32 ед 2 . Следовательно, . Так как 5·3=15 и 8·4=32 , то последнее равенство можно переписать как , что подтверждает формулу умножения обыкновенных дробей вида .

Заметим, что с помощью озвученного правила умножения можно умножать и правильные и неправильные дроби, и дроби с одинаковыми знаменателями, и дроби с разными знаменателями.

Рассмотрим примеры умножения обыкновенных дробей.

Выполните умножение обыкновенной дроби 7/11 на обыкновенную дробь 9/8 .

Произведение числителей умножаемых дробей 7 и 9 равно 63 , а произведение знаменателей 11 и 8 равно 88 . Таким образом, умножение обыкновенных дробей 7/11 и 9/8 дает дробь 63/88 .

Вот краткая запись решения: .

.

Не следует забывать про сокращение полученной дроби, если в результате умножения получается сократимая дробь, и про выделение целой части из неправильной дроби.

Выполните умножение дробей 4/15 и 55/6 .

Применим правило умножения обыкновенных дробей: .

Очевидно, полученная дробь сократима (признак делимости на 10 позволяет утверждать, что числитель и знаменатель дроби 220/90 имеют общий множитель 10 ). Выполним сокращение дроби 220/90 : НОД(220, 90)=10 и . Осталось выделить целую часть из полученной неправильной дроби: .

.

Заметим, что сокращение дроби можно проводить до вычисления произведений числителей и произведений знаменателей умножаемых дробей, то есть, когда дробь имеет вид . Для этого числа a , b , c и d заменяются их разложениями на простые множители, после чего сокращаются одинаковые множители числителя и знаменателя.

Для пояснения, вернемся к предыдущему примеру.

Вычислите произведение дробей вида .

По формуле умножения обыкновенных дробей имеем .

Так как 4=2·2 , 55=5·11 , 15=3·5 и 6=2·3 , то . Теперь сокращаем общие простые множители: .

Остается лишь вычислить произведения в числителе и знаменателе, после чего выделить целую часть из неправильной дроби: .

.

Следует отметить, что для умножения дробей характерно переместительное свойство, то есть, умножаемые дроби можно менять местами: .

Умножение обыкновенной дроби на натуральное число

Начнем с формулировки правила умножения обыкновенной дроби на натуральное число: умножение дроби на натуральное число дает дробь, числитель которой равен произведению числителя умножаемой дроби на натуральное число, а знаменатель равен знаменателю умножаемой дроби.

С помощью букв правило умножения дроби a/b на натуральное число n имеет вид .

Формула следует из формулы умножения двух обыкновенных дробей вида . Действительно, представив натуральное число как дробь со знаменателем 1, получим .

Рассмотрим примеры умножения дроби на натуральное число.

Выполните умножение дроби 2/27 на 5 .

Умножение числителя 2 на число 5 дает 10 , поэтому в силу правила умножения дроби на натуральное число, произведение 2/27 на 5 равно дроби 10/27 .

Все решение удобно записывать так: .

.

При умножении дроби на натуральное число полученную дробь часто приходится сокращать, а если она еще и неправильная, то представлять ее в виде смешанного числа.

Умножьте дробь 5/12 на число 8 .

По формуле умножения дроби на натуральное число имеем . Очевидно, полученная дробь сократима (признак делимости на 2 указывает на общий делитель 2 числителя и знаменателя). Выполним сокращение дроби 40/12 : так как НОК(40, 12)=4 , то . Осталось выделить целую часть: .

Вот все решение: .

Отметим, что сокращение можно было провести, заменив числа в числителе и знаменателе их разложениями на простые множители. В этом случае решение выглядело бы так: .

.

В заключение этого пункта заметим, что умножение дроби на натуральное число обладает переместительным свойством, то есть, произведение дроби на натуральное число равно произведению этого натурального числа на дробь: .

Умножение трех и большего количества дробей

То, как мы определили обыкновенные дроби и действие умножение с ними, позволяет утверждать, что все свойства умножения натуральных чисел распространяются и на умножение дробей.

Переместительное и сочетательное свойства умножения позволяют однозначно определить умножение трех и большего количества дробей и натуральных чисел. При этом все происходит по аналогии с умножением трех и большего количества натуральных чисел. В частности, дроби и натуральные числа в произведении можно для удобства вычисления переставлять местами, а при отсутствии скобок, указывающих порядок выполнения действий, мы можем сами расставить скобки любым из допустимых способов.

Рассмотрим примеры умножения нескольких дробей и натуральных чисел.

Выполните умножение трех обыкновенных дробей 1/20 , 12/5 , 3/7 и 5/8 .

Запишем произведение, которое нам нужно вычислить . В силу правила умножения дробей записанное произведение равно дроби, числитель которой равен произведению числителей всех дробей, а знаменатель – произведению знаменателей: .

Прежде чем вычислить произведения в числителе и знаменателе, целесообразно заменить все множители их разложениями на простые множители и провести сокращение (можно, конечно, сократить дробь и после умножения, но во многих случаях это требует больших вычислительных усилий): .

.

Выполните умножение пяти чисел .

В этом произведении удобно сгруппировать дробь 7/8 с числом 8 , а число 12 с дробью 5/36 , это позволит упростить вычисления, так как при такой группировке очевидно сокращение. Имеем
.

.

www.cleverstudents.ru

Популярное:

  • При обращении в районный суд При обращении в районный суд Уважаемые посетители сайта! Управление Федерального казначейства по г. Санкт-Петербургу (Межрайонная ИФНС России №10 по Санкт-Петербургу) ИНН налогового органа Номер счета получателя СЕВЕРО-ЗАПАДНОЕ […]
  • Расчет госпошлины на снижение размера алиментов Расчет госпошлины на снижение размера алиментов Суды придерживаются следующей позиции: Госпошлина рассчитывается от суммы, на которую уменьшается размер алиментов (от цены иска). Пример расчета размера госпошлины в суд при […]
  • Госпошлина нк рф 333 Статья 333.19 НК РФ. Размеры государственной пошлины по делам, рассматриваемым Верховным Судом Российской Федерации, судами общей юрисдикции, мировыми судьями СТ 333.19 НК РФ. 1. По делам, рассматриваемым Верховным Судом […]
  • Комиссия по фсс приказ Типовое положение о комиссии (уполномоченном) по социальному страхованию N 556а "Типовое положение о комиссии (уполномоченном) по социальному страхованию" УТВЕРЖДАЮ Председатель Фонда социального страхования Российской Федерации […]
  • Коллектор в бурении-это Коллектор в бурении-это Горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Основными классификационными признаками коллектора являются условия фильтрации и аккумуляции в них […]
  • Пункт правил 141 пдд Наша группа в ВК Получить Скидку на обучение. Успей получить скидку 1000 рублей! Запись в автошколу Заполните эту форму, мы свяжемся с Вами и пригласим Вас на занятия. Добро пожаловать! 1. Предупреждающие знаки Предупреждающие […]
  • Страховка в метро Подробно о страховании выезжающих за рубеж Туристическая страховка для выезда за границу состоит из рисков и дополнительных условий для надежной защиты от непредвиденных ситуаций в поездке. Просто собирайте свой полис ВЗР, как […]
  • Нотариус на вернадского метро Нотариус у метро Юго-Западная, Тропарево Ковальчак Ирина Ярославовна - нотариус города Москвы. Нотариальная контора расположена в Западном округе (ЗАО). Ближайшие станции метро: Юго-Западная, Тропарево. Услуги, оказываемые […]