Закон теплового излучения стефана больцмана

Закон теплового излучения стефана больцмана

Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (16.7), а имеет вид:

. (16.11)

Коэффициент А(T) в (16.11), всегда меньший единицы, можно назвать интегральной поглощательной способностью тела. Значения коэффициента А(T) известны для многих технически важных материалов. Так, в достаточно широком диапазоне температур для металлов А(T) = 0,1 ÷ 0,4 , а для угля и окислов металлов А(T) = 0,5 ÷ 0,9 .

Энергетическая светимость АЧТ, численно равная площади под соответствующими кривыми, сильно зависит от температуры. Максимум излучательной способности с увеличением температуры смещается в сторону коротких длин волн.

Закон Стефана-Больцмана не дает информации о спектральном составе излучения абсолютно черного тела.

В 1893 г. немецкий физик В.Вин теоретически рассмотрел термодинамический процесс сжатия излучения, заключенного в полости с идеально зеркальными стенками, и пришел к выводу, что испускательная способность абсолютно черного тела прямо пропорциональна кубу частоты и является функцией отношения ν/T:

, (16.12)

где α – постоянная величина, F — некоторая функция, конкретный вид которой термодинамическими методами установить невозможно.

Переходя в этой формуле Вина от частоты к длине волны, получим:

. (16.13)

Как видно, в выражение для излучательной способности температура входит лишь в виде произведенияλT. Уже это обстоятельство позволило предсказать некоторые особенности функции . В частности, эта функция достигает максимума при определенной длине волныλm, которая при изменении температуры тела изменяется так, чтобы выполнялось условие: λmT = const.

Таким образом, В. Вин сформулировал закон теплового излучения, согласно которому длина волны λm, на которую приходится максимум излучательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

, (16.14)

где — постоянная Вина.

Закон Вина называют законом смещения, подчеркивая тем самым, что при повышении температуры абсолютно черного тела положение максимума его излучательной способности смещается в область коротких длин волн. Результаты экспериментов, приведенные на рис. 16.4, подтверждают этот вывод не только качественно, но и количественно, строго в соответствии с формулой (16.14).

С ростом температуры любого тела длина волны, вблизи которой тело излучает больше всего энергии, также смещается в сторону коротких длин волн. Это смещение, однако, уже не описывается простой формулой (16.14), которую для излучения реальных тел можно использовать только в качестве оценочной, т.е. формула (16.14) остается в силе только при больших частотах и низких температурах.

Кроме закона смещения (16.14) Вин получил выражение для максимального значения излучательной способности АЧТ. Эту зависимость называют вторым законом Вина, согласно которому максимальное значение испускательной способности АЧТ прямо пропорционально абсолютной температуре в пятой степени:

, (16.15)

где . Однако, получить теоретическое выражение для универсальной функции Кирхгофа, хорошо описывающее экспериментальные результаты во всем диапазоне длин волн излучения тела, Вину не удалось.

Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. У.Рэлей и Д.Джинс впервые к этим явлениям применили методы классической статистической физики. Согласно закону о равномерном распределении энергии равновесной системы по степеням свободы на каждую колебательную степень свободы осциллятора с собственной частотой ν приходится энергия, равная =kT, где k −постоянная Больцмана. В соответствии с таким подходом У.Рэлей и Д.Джинс в 1905 г. получили выражение для универсальной функции Кирхгофа:

=kT. (16.16) Здесь − общее число степеней свободы системы, приходящихся на единицу объема полости.

Однако, как показал опыт, формула Рэлея – Джинса хорошо согласуясь с опытными данными только для малых частот (рис.16.5) и больших температур, не удовлетворяет закону смещения Вина, а также закону Стефана-Больцмана. Действительно, для абсолютно черного тела энергетическая светимость R(T), определяемая по формуле Рэлея−Джинса (16.16), оказывается равной бесконечности:

.

Согласно закону Стефана-Больцмана (1.10) энергетическая светимость т.е. является конечной величиной. Поскольку вывод формулы (16.16) был безупречным в своей классической строгости и последовательности, решение проблемы описания теплового излучения в рамках классической физики оказалось невозможным в принципе. Это обстоятельство получило в физике образное название «ультрафиолетовая катастрофа». Причина вышеуказанных трудностей, возникших при отыскании вида функции Кирхгофа, связана с одним из основных положений классической физики, согласно которому энергия любой системы может изменяться непрерывно, т.е. может принимать любые сколь угодно близкие значения.

studfiles.net

Закон Стефана — Больцмана

Закон Стефана — Больцмана

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где ε — степень черноты (для всех веществ ε

где — постоянная Планка, k — постоянная Больцмана, c — скорость света.

Численное значение Дж · с -1 · м -2 · К -4 .

Закон открыт независимо Й. Стефаном и Л. Больцманом в предположении пропорциональности плотности энергии излучения и его давления p = ρ / 3 . В 1880 г. подтверждён Лео Гретцем.

Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по спектру излучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина.

Применение закона к расчёту эффективной температуры поверхности Земли даёт оценочное значение, равное 249 К или −24 °C.

Литература

  • Курс общей физики, книга 5, И. В. Савельев: Астрель, 2001, ISBN 5-17-004587-5

Wikimedia Foundation . 2010 .

Смотреть что такое «Закон Стефана — Больцмана» в других словарях:

ЗАКОН СТЕФАНА-БОЛЬЦМАНА — (закон Стефана), в физике принцип, согласно которому энергия, излучаемая из абсолютно черного тела на определенном участке за определенное количество времени, прямо пропорциональна четвертой степени термодинамической температуры (Т4). Постоянная… … Научно-технический энциклопедический словарь

Закон Стефана-Больцмана — Закон Стефана Больцмана закон излучения абсолютно чёрного тела. Определяет зависимость между мощностью излучения энергии нагретым телом и температурой нагрева. Формулировка закона: Мощность излучения абсолютно чёрного тела прямо пропорциональна … Википедия

Закон Стефана — Закон Стефана Больцмана закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона: Мощность излучения абсолютно чёрного тела прямо пропорциональна… … Википедия

закон Стефана — Больцмана — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Stefan Boltzmann s law … Справочник технического переводчика

закон Стефана-Больцмана — Stefano ir Bolcmano dėsnis statusas T sritis Energetika apibrėžtis Spinduliuotės dėsnis, teigiantis, kad absoliučiai juodo kūno spinduliuojamos šilumos srauto tankis yra proporcingas kūno termodinaminei temperatūrai, pakeltai ketvirtuoju laipsniu … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Закон излучения Стефана — Больцмана — Закон Стефана Больцмана закон излучения абсолютно чёрного тела. Определяет зависимость между мощностью излучения энергии нагретым телом и температурой нагрева. Формулировка закона: Мощность излучения абсолютно чёрного тела прямо пропорциональна … Википедия

Закон Планка — Формула Планка выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Релея Джинса для излучения абсолютно чёрного тела … Википедия

Закон излучения Планка — Формула Планка выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Релея Джинса для излучения абсолютно чёрного тела … Википедия

Закон смещения Вина — Кривые потока излучения абсолютно чёрных тел с разной температурой. Наглядно можно увидеть, что возрастании температуры максимум излучения сдвигается в ультрафиолетовую часть спектра (в область коротких длин волн). Именно эту особенность и описы … Википедия

СТЕФАНА — БОЛЬЦМАНА ЗАКОН ИЗЛУЧЕНИЯ — утверждает пропорциональность 4 й степени абс. темп ры Т полной объёмной плотности r равновесного излучения (r=аT4, где а постоянная) и связанной с ней полной испускательной способности u (u=sT4, где s Стефана Больцмана постоянная). Сформулирован … Физическая энциклопедия

dic.academic.ru

Закон теплового излучения стефана больцмана

2.3.3. Законы теплового излучения

Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.

Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:

Этот закон носит название закон Стефана–Больцмана . Константа σ = 5,67•10 –8 Вт/(м 2 •К 4 ) получила название постоянной Стефана–Больцмана .

Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны

Этот закон получил название закон Вина . Так, для Солнца Т 0 = 5 800 К, и максимум приходится на длину волны λ max ? 500 нм, что соответствует зеленому цвету в оптическом диапазоне.

С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.

college.ru

75. Тепловое излучение. Закон Стефана-Больцмана. Законы Вина. Формула Планка

В нагретых телах часть внутренней энергии вещества может превращаться в энергию излучения. Поэтому нагретые тела являются источниками электромагнитного излучения в широком диапазоне частот. Это излучение называют тепловым излучением.

Эксперименты показывают, что тепловое излучение имеет непрерывный спектр. Это означает, что нагретое тело испускает некоторое количество энергии излучения в любом диапазоне частот или длин волн. Распределение энергии излучения тела по спектру зависит от температуры тела. При этом для всех тел с увеличением температуры максимум энергии излучения смещается в коротковолновый участок спектра, а общая энергия излучения возрастает. Так, если излучение батареи центрального отопления (T

350 К) имеет пик энергии в диапазоне невидимого инфракрасного излучения, то раскаленная поверхность Солнца (T

6000 К) излучает значительную часть энергии в диапазоне видимого света, а при ядерном взрыве (T

10 6 К) большая доля энергии взрыва уносится коротковолновыми рентгеновским и гамма- излучением.

Для описания спектрального состава теплового излучения рассмотрим энергию, излучаемую единицей поверхности нагретого тела в единицу времени в узком диапазоне частот от ν доν+dν. Этот поток лучистой энергииdR, испускаемый с единицы поверхности тела по всем направлениям, пропорционален ширине спектрального диапазона, то естьdR=rdν. Энергиюr, приходящуюся на единичный диапазон частот, называютспектральной испускательной способностью тела илиспектральной плотностью энергетической светимости. Опыт показывает, что для каждого тела испускательная способность является определенной функцией частоты, вид которой изменяется при изменении температуры телаT. В дальнейшем для такой функциональной зависимостиr=r(ν,T), рассматриваемой при заданном значении температуры тела как некоторая функция частоты, будем использовать принятое в теории теплового излучения обозначение:r(ν,T)=rν,T..

Суммарный поток энергии излучения с единицы поверхности тела по всему диапазону частот

называется интегральной испускательной способностьютела или егоэнергетической светимостью.В системе СИ энергетическая светимость измеряется в Вт/м 2 , а спектральная испускательная способность имеет размерность Дж/м 2 .

Испускательную способность тела можно представить и как функцию длины волны излучения λ, которая связана с частотойνчерез скорость света в вакуумеcпо формулеλ=c. Действительно, выделяя потоки излучения, приходящиеся на интервал частоти на соответствующий ему интервал длин волн,и приравнивая их друг другу, находим, что

Отсюда получаем формулу связи между испускательными способностями по шкале частот и шкале длин волн

Знак «минус» у производной /формально опущен, так как он лишь показывает, что с возрастанием длины волны частота убывает.

Для описания процесса поглощения телами излучения введем спектральную поглощательную способностьтелаaν,T. Для этого, выделив узкий интервал частот отν доν+dν, рассмотрим поток излученияdФν, который падает на поверхность тела. Если при этом часть этого потокаdФ ν поглощается телом, то поглощательную способность тела на частотеνопределим как безразмерную величину

характеризующую долю падающего на тело излучения частоты ν, поглощенную телом.

Опыт показывает, что любое реальное тело поглощает излучение различных частот по разному в зависимости от его температуры. Поэтому спектральная поглощательная способность тела aν,Tявляется функцией частоты, вид которой изменяется при изменении температуры тела.

По своему определению поглощательная способность тела не может быть больше единицы. При этом тело, у которого поглощательная способность меньше единицы и одинакова по всему диапазону частот, называют серым телом.

Особое место в теории теплового излучения занимает абсолютно черное тело.ТакГ.Кирхгофназвал тело, у которого на всех частотах и при любых температурах поглощательная способность равна единице.

В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R(T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T:

Несколько позднее, в 1884 году, Л. Больцман теоретически получил эту зависимость из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана. Числовое значение постоянной σ, по современным измерениям, составляет σ = 5,671·10 –8 Вт / (м 2 · К 4 )

К концу 90-х годов XIX века были выполнены тщательные экспериментальные измерения спектрального распределения излучения абсолютно черного тела, которые показали, что при каждом значении температуры T зависимость r(λ, T) имеет ярко выраженный максимум (рис).

С увеличением температуры максимум смещается в область коротких длин волн, причем произведение температуры T на длину волны λm, соответствующую максимуму, остается постоянным:

Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина b = 2,898·10 –3 м·К.

Планк пришел к выводу, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.

Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.

studfiles.net

Закон Стефана—Больцмана

Нагретые тела излучают энергию в виде электромагнитных волн различной длины. Когда мы говорим, что тело «раскалено докрасна», это значит, что его температура достаточно высока, чтобы тепловое излучение происходило в видимой, световой части спектра. На атомарном уровне излучение становится следствием испускания фотонов возбужденными атомами (см. Излучение черного тела). Закон, описывающий зависимость энергии теплового излучения от температуры, был получен на основе анализа экспериментальных данных австрийским физиком Йозефом Стефаном и теоретически обоснован также австрийцем Людвигом Больцманом (см. Постоянная Больцмана).

Чтобы понять, как действует этот закон, представьте себе атом, излучающий свет в недрах Солнца. Свет тут же поглощается другим атомом, излучается им повторно — и таким образом передается по цепочке от атома к атому, благодаря чему вся система находится в состоянии энергетического равновесия. В равновесном состоянии свет строго определенной частоты поглощается одним атомом в одном месте одновременно с испусканием света той же частоты другим атомом в другом месте. В результате интенсивность света каждой длины волны спектра остается неизменной.

Температура внутри Солнца падает по мере удаления от его центра. Поэтому, по мере движения по направлению к поверхности, спектр светового излучения оказывается соответствующим более высоким температурам, чем температура окружающий среды. В результате, при повторном излучении, согласно закону Стефана—Больцмана, оно будет происходить на более низких энергиях и частотах, но при этом, в силу закона сохранения энергии, будет излучаться большее число фотонов. Таким образом, к моменту достижения им поверхности спектральное распределение будет соответствовать температуре поверхности Солнца (около 5 800 К), а не температуре в центре Солнца (около 15 000 000 К).

Энергия, поступившая к поверхности Солнца (или к поверхности любого горячего объекта), покидает его в виде излучения. Закон Стефана—Больцмана как раз и говорит нам, какова излученная энергия. Этот закон записывается так:

где Т — температура (в кельвинах), а σпостоянная Больцмана. Из формулы видно, что при повышении температуры светимость тела не просто возрастает — она возрастает в значительно большей степени. Увеличьте температуру вдвое, и светимость возрастет в 16 раз!

Итак, согласно этому закону любое тело, имеющее температуру выше абсолютного нуля, излучает энергию. Так почему, спрашивается, все тела давно не остыли до абсолютного нуля? Почему, скажем, лично ваше тело, постоянно излучая тепловую энергию в инфракрасном диапазоне, характерном для температуры человеческого тела (чуть больше 300 К), не остывает?

Ответ на этот вопрос, на самом деле, состоит из двух частей. Во-первых, с пищей вы получаете энергию извне, которая в процессе метаболического усвоения пищевых калорий организмом преобразуется в тепловую энергию, восполняющую потери вашим телом энергии в силу закона Стефана—Больцмана. Умершее теплокровное весьма быстро остывает до температуры окружающей среды, поскольку энергетическая подпитка его тела прекращается.

Еще важнее, однако, тот факт, что закон распространяется на все без исключения тела с температурой выше абсолютного нуля. Поэтому, отдавая свою тепловую энергию окружающей среде, не забывайте, что и тела, которым вы отдаете энергию, — например, мебель, стены, воздух, — в свою очередь излучают тепловую энергию, и она передается вам. Если окружающая среда холоднее вашего тела (как чаще всего бывает), ее тепловое излучение компенсирует лишь часть тепловых потерь вашего организма, и он восполняет дефицит за счет внутренних ресурсов. Если же температура окружающей среды близка к температуре вашего тела или выше нее, вам не удастся избавиться от избытка энергии, выделяющейся в вашем организме в процессе метаболизма посредством излучения. И тут включается второй механизм. Вы начинаете потеть, и вместе с капельками пота через кожу покидают ваше тело излишки теплоты.

В вышеприведенной формулировке закон Стефана—Больцмана распространяется только на абсолютно черное тело, поглощающее всё попадающее на его поверхность излучение. Реальные физические тела поглощают лишь часть лучевой энергии, а оставшаяся часть ими отражается, однако закономерность, согласно которой удельная мощность излучения с их поверхности пропорциональна Т 4 , как правило, сохраняется и в этом случае, однако постоянную Больцмана в этом случае приходится заменять на другой коэффициент, который будет отражать свойства реального физического тела. Такие константы обычно определяются экспериментальным путем.

Австрийский физик-экспериментатор. Родился в г. Клагенфурт (Klagenfurt). По окончании Венского университета продолжил свою карьеру там же — с 1863 года в качестве профессора кафедры высшей математики и физики, а с 1866 года — по совместительству в качестве директора Института экспериментальной физики при Венском университете. Исследования Стефана затронули целый ряд разделов физики, включая явления электромагнитной индукции, диффузии, молекулярно-кинетическую теорию газов. Однако своей научной репутацией он обязан, прежде всего, работе по исследованию теплопередачи посредством излучения. Именно он экспериментально нашел формулу закона Стефана—Больцмана путем измерения теплоотдачи платиновой проволоки при различных температурах; теоретическое же обоснование закона дал его ученик Людвиг Больцман. Используя свой закон, Стефан впервые дал достоверную оценку температуры поверхности Солнца — около 6000 градусов по абсолютной шкале.

elementy.ru

Популярное:

  • Разумовский адвокат Адвокат Александр Разумовский - о понятии "семейная собственность" 18 сентября, 2013 Поделиться в социальных сетях: Поделиться в социальных сетях: Материалы по тегам "Профилактика": юмористическое шоу в формате news battle 09 […]
  • Транспортный налог спб за 2014 Транспортный налог Санкт-Петербург 2016 Закон Санкт-Петербурга о транспортном налоге на 2016 год за номером 487-53, от 04 ноября 2002 года, устанавливает правила начисления транспортного налога для двух категорий граждан: […]
  • Взыскать госпошлину в федеральный бюджет Взыскать госпошлину в федеральный бюджет Да за что угодно. См. Налоговый кодекс, ст. 333 И дополнений государственная пошлина, распределяемая в доходы федерального бюджета, бюджетов субъектов Российской Федерации […]
  • Незаезд в гостиницу штрафы Клуб Отельеров ProHotel.Ru Казусы с менеджерами Booking.com Нравится Не нравится Тейшера Евгения Владимировна 04 окт 2013 Нравится Не нравится Захарченко Сергей 05 окт 2013 Уважаемые коллеги!Возникали ли у Вас […]
  • Выплаты пособий по рождению ребенка в рб Детское пособие и пособие по уходу за ребенком в Беларуси: какие выплаты положены родителям Основные моменты о детских пособиях в Беларуси: какие выплаты положены родителям в связи с рождением ребенка, по уходу за ребенком. Куда […]
  • Все нотариусы сызрани Все нотариусы сызрани г. Сызрань, ул. Ульяновская,43 факс: (8464) 98-58-40 (8464) 98-58-40 8-927-614-48-88, 8-927-614-21-25 Уважаемые клиенты! Агентство недвижимости «Ливар» предлагает Вам на выгодных условиях продать и сдать […]
  • Приказ об утверждении годового плана работы Приказ об утверждении годового плана работы От 01. 09 .2015года Об организации образовательной деятельности в 2015-2016 учебном году в МБДОУ «Детский сад комбинированного вида «Сказка» города Анадыря» В соответствии с Законом РФ […]
  • Правило 16 еэк оон Правила ЕЭК ООН N 16 "Единообразные предписания, касающиеся официального утверждения: I. Ремней безопасности, удерживающих систем, детских удерживающих систем и детских удерживающих систем ISOFIX, предназначенных для лиц, […]