Четырехугольники все правила

Четырехугольники все правила

Определение. Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

Свойство. В параллелограмме противоположные стороны равны и противоположные углы равны.

Свойство. Диагонали параллелограмма точкой пересечения делятся пополам.

1 признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.

2 признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

3 признак параллелограмма. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Определение. Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны называются основаниями.

Трапеция называется равнобедренной (равнобочной), если ее боковые стороны равны. В равнобедренной трапеции углы при основаниях равны.

Трапеция, один из углов которой прямой, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции. Средняя линия параллельна основаниям и равна их полусумме.

Прямоугольник

Определение. Прямоугольником называется параллелограмм, у которого все углы прямые.

Свойство. Диагонали прямоугольника равны.

Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

Определение. Ромбом называется параллелограмм, у которого все стороны равны.

Свойство. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

Квадрат есть частный вид прямоугольника, а также частный вид ромба. Поэтому он имеет все их свойства.

Свойства:
1. Все углы квадрата прямые

2. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

fizmat.by

Четырехугольники все правила

Ключевые слова:
четырехугольник, выпуклый, сумма углов, площадь четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

  • Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.
  • Вершины, не являющиеся соседними, называются противоположними.
  • Отрезки, соединяющие противолежащие вершины четырехугольника, называются диагоналями.
  • Стороны четырехугольника, исходящие из одной вершины, называются соседними сторонами.
  • Стороны, не имеющие общего конца, называются противолежащими сторонами.
  • Четырехугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, содержащей любую его сторону.

Виды четырехугольников

  1. Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны
    • Прямоугольник— параллелограмм, у которого все углы прямые
    • Ромб— параллелограмм, у которого все стороны равны
    • Квадрат — прямоугольник, у которого все стороны равны
  2. Трапеция— четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны
  3. Дельтоид— четырехугольник, у которого две пары смежных сторон равны

uztest.ru

Четырехугольники

Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются.

Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.

Виды четырёхугольников

Параллелограмм

Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма

  • противолежащие стороны равны;
  • противоположные углы равны;
  • диагонали точкой пересечения делятся пополам;
  • сумма углов, прилежащих к одной стороне, равна 180°;
  • сумма квадратов диагоналей равна сумме квадратов всех сторон:

Признаки параллелограмма

Четырехугольник является параллелограммом, если:

  1. Две его противоположные стороны равны и параллельны.
  2. Противоположные стороны попарно равны.
  3. Противоположные углы попарно равны.
  4. Диагонали точкой пересечения делятся пополам.

Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны.

Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.

Трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны.

Трапеция, один из углов которой прямой, называется прямоугольной.

Свойства трапеции

  • ее средняя линия параллельна основаниям и равна их полусумме;
  • если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
  • если трапеция равнобокая, то около нее можно описать окружность;
  • если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.

Признаки трапеции

Четырехугольник является трапецией, если его параллельные стороны не равны

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Свойства прямоугольника

Признаки прямоугольника

Параллелограмм является прямоугольником, если:

  1. Один из его углов прямой.
  2. Его диагонали равны.

Ромбом называется параллелограмм, у которого все стороны равны.

Свойства ромба

  • все свойства параллелограмма;
  • диагонали перпендикулярны;
  • диагонали являются биссектрисами его углов.

Признаки ромба

  1. Параллелограмм является ромбом, если:
  2. Две его смежные стороны равны.
  3. Его диагонали перпендикулярны.
  4. Одна из диагоналей является биссектрисой его угла.

Квадратом называется прямоугольник, у которого все стороны равны.

Свойства квадрата

  • все углы квадрата прямые;
  • диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

Признаки квадрата

Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Основные формулы

  1. Произвольный выпуклый четырехугольник
    d1, d2 диагонали; — угол между ними; S — площадь.

S =d1d2 sin

Параллелограмм
a и b — смежные стороны; угол между ними; ha высота, проведенная к стороне a.

S = ab sin

S =d1d2 sin

Трапеция
a и b — основания; h — расстояние между ними; l — средняя линия.

Прямоугольник

S =d1d2 sin

Ромб

S = a 2 sin

S =d1d2

Квадрат
d — диагональ.

S =d 2

www.univer.omsk.su

Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)

Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников.
Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции.

Виды четырехугольников:

  • Параллелограмм — это четырехугольник у которого противолежащие стороны параллельны

  • Ромб — это параллелограмм, у которого все стороны равны.

  • Прямоугольник — это параллелограмм, у которого все углы прямые.

  • Квадрат — это прямоугольник, у которого все стороны равны.

  • Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие — не параллельны.

Свойства произвольных четырехугольников:

  • Сумма внутренних углов четырехугольника равна 360 o
  • Если соединить отрезками середины соседних сторон — получится параллелограмм:

Свойства параллелограмма:

  • Противолежащие стороны попарно равны:
  • Противолежащие углы попарно равны:
  • Сумма углов прилежащих к любой стороне равна 180 о :
  • Диагонали делятся точкой пересечения пополам:
  • Сумма квадратов диагоналей равна сумме квадратов всех сторон:
  • Каждая диагональ делить параллелограмм на два равных треугольника:
  • Обе диагонали делят параллелограмм на четыре равновеликих треугольника:

Свойства ромба:

  • Диагонали ромба перпендикулярны, и делятся точкой пересечения пополам:
  • Диагонали ромба являются биссектрисами внутренних углов:
  • Если соединить отрезками середины соседних сторон любого ромба, получается прямоугольник:

Свойства прямоугольника:

  • Диагонали прямоугольника равны, и делятся точкой пересечения пополам:
  • Если соединить отрезками середины соседних сторон любого прямоугольника, то получится ромб:

Свойства квадрата:

  • Диагонали квадрата равны, перпендикулярны, и точкой делятся точкой пересечения пополам:

Свойства трапеции:

  • Средняя («серединная») линия трапеции параллельна основаниям, равна их полусумме, и делит любой отрезок с концами, лежащими на прямых, содержащих основания, пополам:
  • Сумма углов, прилежащих к боковой стороне трапеции, равна 180 о :
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции — равновелики:
  • Треугольники, образованные боковыми сторонами и отрезками диагоналей трапеции — подобны:
  • Любой отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции делится этой точкой в отношении:

Консультации и техническая
поддержка сайта: Zavarka Team

www.dpva.ru

Четырехугольники все правила

Неевклидова геометрия, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути ктеории относительности.

Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить. Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.

Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (см. рис.), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.

Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.

Четырёхугольник

Четырёхугольник — это многоугольник, содержащий четыре вершины и четыре стороны.

Четырёхугольник, геометрическая фигура — многоугольник с четырьмя углами, а также всякий предмет, устройство такой формы.

Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.

Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).

Виды четырёхугольников

  • Параллелограмм— четырёхугольник, у которого все противоположные стороны параллельны;
  • Прямоугольник— четырёхугольник, у которого все углы прямые;
  • Ромб— четырёхугольник, у которого все стороны равны;
  • Квадрат — четырёхугольник, у которого все углы прямые и все стороны равны;
  • Трапеция — четырёхугольник, у которого две противоположные стороны параллельны;
  • Дельтоид — четырёхугольник, у которого две пары смежных сторон равны.

Параллелограмм

Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.

Параллелогра́мм (от греч. parallelos — параллельный и gramme — линия) т. е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

  • противолежащие стороны равны;
  • противоположные углы равны;
  • диагонали точкой пересечения делятся пополам;
  • сумма углов, прилежащих к одной стороне, равна 180°;
  • сумма квадратов диагоналей равна сумме квадратов всех сторон.

Четырехугольник является параллелограммом, если:

  1. Две его противоположные стороны равны и параллельны.
  2. Противоположные стороны попарно равны.
  3. Противоположные углы попарно равны.
  4. Диагонали точкой пересечения делятся пополам.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

  • противолежащие стороны равны;
  • противоположные углы равны;
  • диагонали точкой пересечения делятся пополам;
  • сумма углов, прилежащих к одной стороне, равна 180°;
  • сумма квадратов диагоналей равна сумме квадратов всех сторон;
  • диагонали равны.

Параллелограмм является прямоугольником, если:

  1. Один из его углов прямой.
  2. Его диагонали равны.

Ромбом называется параллелограмм, у которого все стороны равны.

  • противолежащие стороны равны;
  • противоположные углы равны;
  • диагонали точкой пересечения делятся пополам;
  • сумма углов, прилежащих к одной стороне, равна 180°;
  • сумма квадратов диагоналей равна сумме квадратов всех сторон;
  • диагонали перпендикулярны;
  • диагонали являются биссектрисами его углов.

Параллелограмм является ромбом, если:

  1. Две его смежные стороны равны.
  2. Его диагонали перпендикулярны.
  3. Одна из диагоналей является биссектрисой его угла.

Квадратом называется прямоугольник, у которого все стороны равны.

  • все углы квадрата прямые;
  • диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
  1. Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.

Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны.

Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.

Трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны.

Трапеция, один из углов которой прямой, называется прямоугольной.

  • ее средняя линия параллельна основаниям и равна их полусумме;
  • если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
  • если трапеция равнобокая, то около нее можно описать окружность;
  • если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.

  1. Четырехугольник является трапецией, если его параллельные стороны не равны

Дельтоид — четырёхугольник, обладающий двумя парами сторон одинаковой длины. В отличие от параллелограмма, равными являются не противоположные, а две пары смежных сторон. Дельтоид имеет форму, похожую на воздушного змея.

  • Углы между сторонами неравной длины равны.
  • Диагонали дельтоида (или их продолжения) пересекаются под прямым углом.
  • В любой выпуклый дельтоид можно вписать окружность, кроме этого, если дельтоид не является ромбом, то существует ещё одна окружность, касающаяся продолжений всех четырёх сторон. Для невыпуклого дельтоида можно построить окружность, касающуюся двух бо́льших сторон и продолжений двух меньших сторон и окружность, касающуюся двух меньших сторон и продолжений двух больших сторон.
  • Если угол между неравными сторонами дельтоида прямой, то в него можно вписать окружность (описанный дельтоид).
  • Если пара противоположных сторон дельтоида равны, то такой дельтоид является ромбом.
  • Если пара противоположных сторон и обе диагонали дельтоида равны, то дельтоид является квадратом. Квадратом является и вписанный дельтоид с равными диагоналями.

Интересный факт

Возникновение геометрии восходит к глубокой древности и было обусловлено практическими потребностями человеческой деятельности (необходимостью измерения земельных участков, измерения объемов различных тел и т. д.).

Простейшие геометрические сведения и понятия были известны еще в Древнем Египте. В этот период геометрические утверждения формулировались в виде правил, даваемых без доказательств.

С VII века до н. э. по I век н. э. геометрия как наука бурно развивалась в Древней Греции. В этот период происходило не только накопление различных геометрических сведений, но и отрабатывалась методика доказательств геометрических утверждений, а также делались первые попытки сформулировать основные первичные положения (аксиомы) геометрии, из которых чисто логическими рассуждениями выводится множество различных геометрических утверждений. Уровень развития геометрии в Древней Греции отражен в сочинении Евклида «Начала».

В этой книге впервые была сделана попытка дать систематическое построение планиметрии на базе основных неопределяемых геометрических понятий и аксиом (постулатов).

Особое место в истории математики занимает пятый постулат Евклида (аксиома о параллельных прямых). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь в середине XIX века благодаря исследованиям Н. И. Лобачевского, Б. Римана и Я. Бойяи стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.

«Начала» Евклида оказали огромное влияние на развитие математики. Эта книга на протяжении более чем двух тысяч лет была не только учебником по геометрии, но и служила отправным пунктом для очень многих математических исследований, в результате которых возникли новые самостоятельные разделы математики.

Систематическое построение геометрии обычно производится по следующему плану:

I. Перечисляются основные геометрические понятия, которые вводятся без определений.

II. Дается формулировка аксиом геометрии.

III. На основе аксиом и основных геометрических понятий формулируются остальные геометрические понятия и теоремы.

  1. Происхождение названия Неевклидовой геометрии?
  2. Какаие фигуры называются четырёхугольниками?
  3. Свойства паралелограмма?
  4. Виды четырехугольников?

Список использованных источников

  1. А.Г. Цыпкин. Справочник по математике
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»

Над уроком работали

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме, где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

edufuture.biz

Популярное:

  • Статья 282 федерального закона Статья 282. Возбуждение ненависти либо вражды, а равно унижение человеческого достоинства (в редакции Федерального закона от 08.12.2003 N 162-ФЗ) ч 1. Действия, направленные на возбуждение ненависти либо вражды, а также на […]
  • Налог на недвижимость калькулятор москва 2018 Калькулятор налога на имущество организаций Как рассчитать налог на имущество организаций Форма расчета по авансовым платежам изменилась. Начиная с отчетности за первое полугодие 2017, расчет налога на имущество организаций […]
  • Законы экологии популяций Законы экологии За более чем 100-летний период разностороннего изучения популяций и сообществ накоплено огромное количество фактов. Среди них - большое число, отражающих случайные или нерегулярные явления и процессы. Но не […]
  • Заявление о выборе варианта пенсионного обеспечения Варианты пенсионного обеспечения в системе обязательного пенсионного страхования До конца 2015 года граждане 1967 года рождения и моложе могли выбрать: продолжить формировать пенсионные накопления или отказаться от накопительной […]
  • Приказ минсельхоза 549 Приказ минсельхоза 549 Зарегистрировано в Минюсте РФ 5 марта 2009 г. N 13476 МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ от 16 декабря 2008 г. N 532 ОБ УТВЕРЖДЕНИИ КЛАССИФИКАЦИИ ПРИРОДНОЙ ПОЖАРНОЙ ОПАСНОСТИ ЛЕСОВ И […]
  • Пенсии инвалидам с 1 января 2018 года Повышение пенсии детям инвалидам с 1 января 2018 года Пенсионное обеспечение граждан является обязанностью, возложенной на государство. Так указано в своде законов страны – в Конституции. Среди инвалидов, которым необходима […]
  • Правило внутреннего распорядка оао ржд Правило внутреннего распорядка оао ржд ОАО "РОССИЙСКИЕ ЖЕЛЕЗНЫЕ ДОРОГИ" ПРИКАЗ от 26 июля 2012 г. N 87 ОБ УТВЕРЖДЕНИИ ПРАВИЛ ВНУТРЕННЕГО ТРУДОВОГО РАСПОРЯДКА РЕГИОНАЛЬНЫХ СЛУЖБ (ОТДЕЛА) РАЗВИТИЯ ПАССАЖИРСКИХ СООБЩЕНИЙ И […]
  • Закон 3 стадий конта Закон 3 стадий конта Позитивизм как философское течение исходит из представлений о том, что основной массив знаний о мире, человеке и обществе получается в специальных науках, что "позитивная" наука должна отказаться от попыток […]