Формы распределение законов

Основные законы распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика.

Стоимость: 2000 руб / 90 мин.

Репетитор: Крюков Илья Хассанович

Предметы: математика, экономика, бухгалтерский учет.

Стоимость: 1600 руб / 60 мин.

Репетитор: Скрипаленко Михаил Михайлович

Предметы: математика (ЕГЭ), английский язык (GMAT, GRE (general), GRE subject test in maths, IELTS, TOEFL, BEC).

Стоимость: 1200 руб / 60 мин.

Репетитор: Матвеева Милада Андреевна

Предметы: русский язык, литература (ЕГЭ, ГИА).

Стоимость: 1200 руб / 60 мин.

Репетитор: Тверской Василий Борисович

Предметы: математика, физика.

Стоимость: 3500 руб / 90 мин.

Репетитор: Поздняков Андрей Александрович

Предметы: английский язык, (ЕГЭ). Подготовка к TOEFL и IELTS.

Стоимость: 2000 руб / 60 мин.

Репетитор: Ершикова Марина Львовна

Предметы: бухгалтерский учет (кроме банковского), налогообложение, аудит.

Стоимость: 1500 руб / 60 мин.

1.Биномиальный закон распределения.

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m — число заказов, полученных компанией на покупку телевизора. Сn m — число сочетаний m телевизоров по n, p — вероятность наступления события А, т.е. заказа телевизора, q — вероятность не наступления события А, т.е. не заказа телевизора, P m,n — вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

P m — вероятность наступления события А в испытание под номером m.
р — вероятность наступления события А в одном испытании.
q = 1 — p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 — что десятый блок оказался неисправным — 0,038742049 , 2 — что все проверяемые блоки оказались исправными — 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M — всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m — число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

λ = np = const
n — число испытаний, стремящиеся к бесконечности
p — вероятность наступления события, стремящаяся к нулю
m — число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B — 0,06 и C — 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

где
а — математическое ожидание случайной величины
σ — среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть — от а до х. (Рис.7)

www.mathtask.ru

Формы распределение законов

При составлении ряда распределения следует иметь в виду, что все события являются несовместными, т.к. случайная величина Х может принять в результате испытания только одно значение. Эти события случайны, т.к. нельзя указать, какое значение примет случайная величина и, последнее, все события должны образовывать полную группу событий, т.к. никаких других событий, кроме перечисленных, в результате опыта произойти не может.

На основании вышеизложенного, что события Х = хi(i= 1, 2, 3, …n) образуют полную группу несовместных событий, сумма вероятностей всех возможных частных значений должна удовлетворять условию:

Ряд распределения можно представить графически, для этого по оси абсцисс откладывают возможные значения случайной величины, а по оси ординат – вероятности этих значений (рис. 4).

1

0,4

0

0

0 ,1

0 х

Для наглядности вершины полученных ординат соединяют пунктирными отрезками. Следует помнить, что соединение вершин прямыми делается только в целях наглядности, т.к. в промежутках между х1их2;х2их3и т.д., дискретная случайная величина Х значений принять не может, следовательно, вероятность ее появления в этих промежутках равна 0. Полученную фигуру называютмногоугольником распределения.

Рассмотренный ряд распределения является весьма удобной формой представления закона распределения. Однако основным недостатком данной формы закона распределения является то, что область его применения ограничивается распределением дискретной случайной величины с конечным числом возможных значений.

Для непрерывной случайной величины, когда возможные значения случайной величины заполняют всю числовую ось или какой-то ее интервал, поставить в соответствие каждому частному значению случайной величины соответствующую ему вероятность, невозможно. Множество возможных значений такой случайной величины несчетно (их невозможно перечислить в верхней части таблицы). Это вызывает необходимость иметь такую форму представления закона распределения, которая была бы приемлема не только для вероятностной характеристики дискретной случайной величины, но и для непрерывной, когда необходимо определить вероятность появления случайной величины на некотором промежутке числовой оси.

То есть, иметь какую то универсальную форму закона распределения для всех типов случайной величины.

Для количественной характеристики распределения как дискретной, так и непрерывной случайной величины, удобно воспользоваться не вероятностью события Х = хi, а вероятностью события Х f(b)), то это означает, что в небольшой окрестности точкиапри повторении испытаний случайная величина Х будет появляться чаще, чем в такой же по величине окрестности вокруг точки Х =b(приа =b).

Плотность распределения так же, как и функция распределения, есть одна из форм закона распределения. Однако, в противоположность функции распределения, являющейся универсальной формой закона распределения, плотность распределения существует только для непрерывных случайных величин.

Сформулируем основные свойства плотности распределения:

1. Плотность распределения неотрицательна.

.

2. Интеграл в бесконечных пределах от плотности распределения равен 1.

Геометрически это свойство плотности распределения означает, что вся площадь, ограниченная кривой распределения и осью абсцисс, равна 1 (рис. 10).

f(х)

Таким образом, подводя итог вышесказанному, закон распределения дискретной случайной величины может быть задан одним из следующих способов:

формулой, с помощью которой можно вычислить вероятность всех возможных значений случайной величины;

Закон распределения непрерывной случайной величины может быть задан:

формулой, с помощью которой можно вычислить вероятность попадания случайной величины в заданный интервал;

studfiles.net

Формы представления законов распределения вероятностей и их числовые характеристики. Определение параметров распределения случайной величины.

Закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание, как будет показано далее, приближенно равно среднему значению случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения х1, х2, . хп, вероятности которых соответственно равны р1, р2, . . ., рп. Тогда математическое ожидание М (X)случайной величины X определяется равенством

Если дискретная случайная величина X принимает счетное множество возможных значений,то М(Х)=

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

6.Закон распределения вероятностей дискретной случайной величины и его формы: аналитическая, табличная ,графическая. Случайная величина непрерывного типа.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая — их вероятности:

studopedia.info

Формы задания законов распределения случайных величин

Случайной называется величина, принимающая в результате испытания числовое значение, которое принципиально нельзя указать исходя из условий событий. Случайная величина обладает целым набором допустимых значений, но в результате каждого отдельного испытания принимает лишь какое-то одно из них. Чтобы охарактеризовать случайную величину, необходимо задать набор ее допустимых значений. В зависимости от того каков набор, этих значений различают непрерывные и дискретные случайные величины.

Случайная величина называется дискретной, если между любыми двумя ее значениями заключено лишь конечное число других допустимых значений. Если же возможные значения случайной величины заполняют непрерывно промежуток между любыми двумя ее значениями, то такая случайная величина непрерывная. Случайные величины будут, обозначаться большими буквами, а их возможные значения – соответствующими малыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения этой величины и соответствующие им вероятности.

Такую таблицу называют рядом распределения случайной величины. Графическое представление ряда распределения, имеющее вид рис. 1, называют многоугольником распределения.

Ряд распределения, давая исчерпывающую характеристику дискретной случайной величине, не может быть использован для задания непрерывной случайной величины. Для количественной характеристики распределения вероятностей непрерывной величины надо пользоваться не вероятностью события , а вероятностью события , где x – некоторая текущая переменная. Вероятность этого события зависит от x и есть некоторая функция от x. Эта функция называется функцией распределения случайной величины X и обозначается . .

Функцию распределения называют также интегральной функцией или интегральным законом распределения. Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин – дискретных и непрерывных, являясь одной из форм закона распределения.

Обычно функция распределения непрерывной случайной величины представляет собой функцию, непрерывную во всех точках. Однако можно найти пример случайных величин, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде непрерывна, а в отдельных точках терпит разрывы. Такие случайные величины называются смешанными.

Функция распределения, увеличиваясь от значения к значению, является функцией «накопленной» вероятности и не дает простого и наглядного представления о законе распределения случайной величины. Этого недостатка лишена функция , называемая плотностью распределенияили плотностью вероятности, или дифференциальной функцией распределения случайной величины X. Для получения ее рассмотрим вероятность попадания случайной величины X на участок . Найдем теперь среднюю вероятность, приходящуюся на единицу длины этого участка, а сам участок будет стягивать в точку за счет :

.

Функция – производная функции распределения характеризует как бы плотность, с которой распределяются значения случайной величины в данной точке. График называют кривой распределения(рис. 2).

Плотность распределения как и функция распределения есть одна из форм задания закона распределения. Эта форма более удобна и наглядна, однако она существует только для непрерывных случайных величин.

С помощью плотности распределения легко вычислить вероятность попадания случайной величины на заданный участок. Если это элементарный участок , то искомая вероятность равна и в соответствии с рис.2 равна . Величина называется элементом вероятности и имеет определенную геометрическую интерпретацию. Вероятность попадания случайной величины на конечный участок равна интегралу от элемента вероятности .

По плотности распределения легко найти функцию распределения: .

Основные свойства плотности распределения.

1. Плотность распределения есть неотрицательная функция

т.к. – неубывающая функция.

2. Интеграл в бесконечных пределах от плотности распределения равен 1.

.

Геометрически основные свойства плотности распределения означают, что:

¾ во-первых вся кривая распределения лежит не ниже оси абсцисс;

¾ во-вторых полная площадь, ограниченная кривой распределения и осью абсцисс, равна единице.

Числовые характеристики случайных величин

Ранее в качестве характеристик случайных величин были рассмотрены:

для дискретной случайной величины: функция распределения; ряд распределения (графически – многоугольник распределения);

для непрерывной случайной величины: функция распределения; плотность распределения (графически – кривая распределения).

Каждый закон распределения представляет собой некоторую функцию, и указание этой функции полностью описывает случайную величину с вероятностной точки зрения. Однако во многих случаях нет необходимости определять случайную величину исчерпывающим образом. Достаточно бывает указать только отдельные числовые параметры, характеризующие основные особенности распределения случайной величины. Пользуясь такими характеристиками, можно выразить все существенные сведения о случайной величине более компактно, с помощью минимального числа параметров.

Такие характеристики, назначение которых – выразить в сжатой форме наиболее существенные особенности распределения, называются числовыми характеристиками случайной величины.

Дата добавления: 2015-08-17 ; просмотров: 818 . Нарушение авторских прав

studopedia.info

Нормальный закон распределения — введение

Приветствую дорогих читателей и подписчиков блога statanaliz.info. Продолжаем разговор о распределении данных. Как мы знаем, распределение может быть эмпирическим и теоретическим. Эмпирические данные всегда ограничены своей точностью и охватом возможных ситуаций. Поэтому для расчета интересующих вероятностей, пределов отклонений, размеров выборок и т.д. используют теоретические модели распределения случайной величины.

Самая известная статистическо-вероятностная модель – это закон нормального распределения. Нормальный закон, как и другие теоретические распределения, не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. А вот конкретная форма распределения задается специальными параметрами в этом уравнении.

Например, всем понятно выражение типа у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Без заданных параметров невозможно четко представить эту линию. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами, которые «подгоняют» модель под реальные данные.

Нормальный закон в теории статистики имеет фундаментальное значение. Он также лежит в основе ряда других распределений, поэтому ухватить самую суть желательно сразу. Вначале, возможно, будет слегка мутновато, но потом станет значительно легче, обещаю. Фактически после знакомства с нормальным распределением откроются новые горизонты использования статистических методов. Кстати, собственное логическое мышление под действием статистики также начинает деформироваться, в результате чего, общение с творческими личностями превращается в испытание. Ну да ладно.

Начнем с истории. Рассказываю, как сам слышал. Возможно, где-то перепутаю века, царей или континенты. В общем, я ни разу не историк.

Краткая история открытия нормального закона

История нормального закона насчитывает уже почти 300 лет. Говорят, первым причастным к открытию стал гражданин Абрахам де Муавр, который зафиксировал свои соображения по этому поводу в далеком 1733 году. Речь тогда шла о теоретическом приближении биномиального распределения при большом количестве наблюдений. Однако труды математика не были оценены по достоинству и Абрахама несправедливо забывают, когда речь идет об открытии нормального распределения. Широкое признание нормальный закон получил благодаря анализу выборочных данных.

Сейчас всем известно, что результаты выборочного исследования всегда ошибочны относительно истинного значения, которое исследователь и пытается оценить с помощью выборки. Если провести несколько измерений, то все они, скорее всего, будут отличаться друг от друга и, соответственно, от оцениваемого показателя по генеральной совокупности.

Статистика – наука исключительно практическая. Точность выводов здесь не пустой звук, а одна из насущных задач. В то же время вариация данных не способствует решению проблемы. Например, астрономы, проводя одни и те же наблюдения за небесными телами, все время получали различные результаты. Поначалу они считали, что всему виной их собственная небрежность и старались этот факт не сильно афишировать. Однако вопрос о постоянных отклонениях торчал занозой в ученом месте и не давал покоя пытливым умам тогдашних математиков. Как же быть с тем обстоятельством, что фактически нет возможности получить однозначный результат измерений? Что делать? Куда бежать? И какой из этого следует вывод? (последний вопрос от Ослика Иа).

И вот, эволюция мысли докатилась до того, что в светлую голову гражданина по имени Даниил Бернулли пришла замечательная мысль: разброс данных у самых различных явлений имеет что-то общее. Так, он сравнил разброс отклонений в астрономических наблюдениях с разбросом попаданий лучника в мишень и обнаружил, что и там и там максимальная концентрация результатов приходится на область относительно близкую к среднему значению, в то время как значительные отклонения происходят гораздо реже. Даниил подумал: а с чего бы это? И развивая успех, предложил соответствующий математический закон. Однако на этот раз ему не фартануло – закон оказался неверным. Кстати, этот Даниил был племянником другого Бернулли по имени Якоб. Того самого, который придумал закон больших чисел и процесс своего имени (когда в некотором эксперименте имеют место только два возможных исхода: благоприятный и неблагоприятный).

Тем не менее, идея об универсальном распределении ошибок измерений не осталась не замеченной, и немного позже другие ученые все-таки сформулировали правильный закон о случайных отклонениях. К открытию стали причастны Карл Фридрих Гаусс и Пьер-Симон Лаплас.

Гаусс вывел закон о распределении ошибок, чем и увековечил память о себе названием соответствующей функции (1809 г.). Чуть позже (в 1812 г.) П. Лаплас получил интеграл, который сегодня известен как функция нормального распределения.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение. Центральная предельная теорема далее многократно уточнялась и видоизменялась, но суть ее осталась прежней. Таким образом, история открытия нормального закона насчитывает более 200 лет. Начиная от открытия Муавра, до окончательных формулировок ЦПТ в середине 20-го века. На сегодня мы имеем довольно развитый математический аппарат для анализа нормально распределенных данных.

На всякий случай еще раз отмечу, что приведенная выше история – это фривольный пересказ того, что я читал. Для серьезного изучения вопроса лучше обратиться к специализированной литературе.

Закон нормального распределения

Прежде чем погружаться в мир формул, крайне важно получить наглядное представление о предмете. Поэтому предлагаю начать с рисунка, с помощью которого далее будут изложены основные сведения о нормальном законе. Итак, функция плотности нормального распределения, она же функция Гаусса, имеет следующий вид.

Кривая Гаусса по форме несколько напоминает колокол, поэтому график нормального закона часто еще называют колоколообразной кривой. Если вдруг увидите термин «колоколообразная кривая», знайте, что речь идет о нормальном распределении.

Как видно, у графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Другими словами, вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины. Смотрим на картинку.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Теперь посмотрим на формулу, по которой нарисована колоколообразная кривая, т.е. на функцию Гаусса.

Выглядит немного пугающе, но сейчас разберемся. В функции плотности нормального распределения присутствует: две математические константы

π – соотношение длины окружности и его диаметра, равно примерно 3,142;

е – основание натурального логарифма, равно примерно 2,718;

два параметра, которые задают форму конкретной кривой

m — математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

ну и сама переменная x, для которой высчитывается значение функции, т.е. плотность вероятности.

Константы, понятное дело, не меняются. Зато параметры — это то, что придает окончательный вид конкретному нормальному распределению. Отсюда и название: параметрическая функция или семейство параметрических функций. Напомню, есть и другие теоретические распределения, но мы сейчас говорим о нормальном.

Итак, конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности, что хорошо видно на самодвижущейся картинке.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса сконцентрирована у центра. Если же у данных большой разброс, то они «размажутся» по широкому диапазону.

Плотность нормального распределения не имеет прямого практического применения (если не считать приближенных расчетов при использовании биномиального распределения). Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:


Используя свойство непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

statanaliz.info

Популярное:

  • Фмс взятки краснодар Отдел УФМС России по Краснодарскому краю в Прикубанском округе г.Краснодара График работы по приему населения Режим работы отдела УФМС в Прикубанском округе г. Краснодара Понедельник: 9.00 - 13.00 и 14.00 - 18.00 Вторник: 9.00 - […]
  • Касимов следственный комитет Касимов следственный комитет СЛЕДСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ: 105005, г. Москва, Технический переулок, д. 2 Председатель СК РФ генерал-полковник юстиции Бастрикин Александр Иванович Телефон справочной службы: 8 (495) […]
  • Как позвонить в час суда Как позвонить в час суда На входе в здание суда осуществляется пропускной контроль. Возможно, понадобится время на ожидание. Пожалуйста, подумайте о том, чтобы Вы своевременно оказались в зале суда. Имейте при себе, […]
  • Нижний новгород приокский район нотариус Нижний новгород приокский район нотариус Нотариусы. Автозаводский район. Данкова Наталья Яковлевна Адрес: 603004, г. Н.Новгород, пр. Кирова, д. 19 Телефон: (831) 295-27-65, (831) 295-26-36 Адрес электронной почты: This email […]
  • Таможенные правила италии Таможня Италии Если Вы собрались посетить Италию, то должны знать правила въезда в данную страну. Итальянская таможня довольно редко проводит досмотр багажа, она руководствуется самыми обычными правилами и нормами вывоза и […]
  • Выпускной коллектор гольф 2 18 Выпускной коллектор гольф 2 18 я поставил на точно такой же мотор коллектор от дизельного VW t4. встает как родной, хотя внешне сильно отличается (трубы короче). но места сочленения с гбц и с приемной трубой абсолютно одинаковые […]
  • Оптина пустынь проживание частный сектор Оптина Пустынь ТолкованияСвященногоПисания Сми­ряй­тесь, сми­ряй­тесь. Вся на­у­ка, вся муд­рость жиз­ни зак­лю­ча­ет­ся в сих сло­вах: Сми­рих­ся, и спа­се мя Гос­подь (Пс. 114, 5). Сми­ряй­тесь и тер­пи­те все. […]
  • Отдел выдачи справок о судимости Отдел выдачи справок о судимости Выдача справки о наличии (отсутствии) судимости Заказать справку о наличии (отсутствии) судимости и (или) факте уголовного преследования либо о прекращении уголовного преследования можно […]