Кирхгоф третий закон

Кирхгоф третий закон

, где p+q=n.

Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .

При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно. При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:


  • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю

Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;


  • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре

, где p+q=n

Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — NJ .

Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов Nу минус один.
Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

  1. определить число узлов и ветвей цепи Nу и N в ;
  2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
  3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
    направления протекания токов;
  4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
  5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
  6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

Рассмотрим этот алгоритм на примере рис 2.

Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

de.ifmo.ru

ПЕРВЫЙ ЗАКОН КИРХГОФА

Законы Кирхгофа (более корректно — правила Киргхгофа) применяются при расчете сложных (разветвленных) электрических цепей. Предлагаю рассмотреть их по очереди и начать, естественно, с первого.

Здесь:

  • I i — ток в узле,
  • n — число проводников, сходящихся в узле,
  • токи, втекающие в узел ( I1, In ) считаются положительными,
  • вытекающие токи ( I2, I3 ) — отрицательными.

В таком виде этот закон звучит и выглядит, наверное, очень академично, поэтому предлагаю все несколько упростить.

Нарисуем разветвленную электрическую цепь в более привычном виде (рис.2) и дадим такую формулировку:

Сумма токов втекающих в узел равна сумме токов, вытекающих из узла.

Для этого случая формула первого закона Кирхгофа примет вид: I= I1+I2+. +In , что для повседневных вычислений гораздо удобнее.

ВТОРОЙ ЗАКОН КИРХГОФА

Второй закон Кирхгофа определяет зависимость между падениями напряжений и ЭДС в замкнутых контурах и имеет следующий вид (рис.3) и определение:

При отсутствии в контуре ЭДС сумма падений напряжений равна 0.

Теперь несколько пояснений по практическому применению этого правила Кирхгофа:

  • поскольку, алгебраическая сумма требует учета знака следует выбрать направление обхода контура ( на рис.3 — по часовой стреклке), токи и напряжения, совпадающие с этим направлением считать положительными, иные — отрицательными. При затруднении в определении направления тока, возьмите произвольное, если в результате вычислений получите результат со знаком «-«, поменяйте выбранное направление на противоположенное.
  • для нашего примера можно записать:
    U1+U3-U2=0
    U4+U5-U3=0
  • кроме того, руководствуясь первым правилом Кирхгофа :
    Iвх — I1 — I2 = 0
    I1 — I3 — I4=0
    I4 — I5=0
    I2 + I3 + I5 — Iвых=0 ,

получаем систему из 6 уравнений, полностью описывающую рассматриваемую электрическую цепь.

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

1. Теория: Законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

www.sxemotehnika.ru

третий закон киргоффа срочно!

Оба закона Кирхгофа формулируются достаточно просто и имеют понятную физическую интерпретацию. Первый закон гласит, что если рассмотреть любой узел цепи (то есть точку разветвления, где сходятся три или более проводов) , то сумма поступающих в цепь электрических токов будет равна сумме исходящих, что, вообще говоря, является следствием закона сохранения электрического заряда. Например, если вы имеете Т-образный узел электрической цепи и по двум проводам к нему поступают электрические токи, то по третьему проводу ток потечет в направлении от этого узла, и равен он будет сумме двух поступающих токов. Физический смысл этого закона прост: если бы он не выполнялся, в узле непрерывно накапливался бы электрический заряд, а этого никогда не происходит.

Второй закон не менее прост. Если мы имеем сложную, разветвленную цепь, ее можно мысленно разбить на ряд простых замкнутых контуров. Ток в цепи может различным образом распределяться по этим контурам, и сложнее всего определить, по какому именно маршруту потекут токи в сложной цепи. В каждом из контуров электроны могут либо приобретать дополнительную энергию (например, от батареи) , либо терять ее (например, на сопротивлении или ином элементе) . Второй закон Кирхгофа гласит, что чистое приращение энергии электронов в любом замкнутом контуре цепи равно нулю. Этот закон также имеет простую физическую интерпретацию. Если бы это было не так, всякий раз, проходя через замкнутый контур, электроны приобретали или теряли бы энергию, и ток бы непрерывно возрастал или убывал. В первом случае можно было бы получить вечный двигатель, а это запрещено первым началом термодинамики; во втором — любые токи в электрических цепях неизбежно затухали бы, а этого мы не наблюдаем.

Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Пример параллельной цепи является — ламп «лесенкой» : напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по второму закону Кирхгофа.

otvet.mail.ru

Законы Кирхгофа Объясните простым языком положения законов кирхгофа

Именно ЗАКОНЫ Кирхгофа?

Закон Кирхгофа гласит, что температурный коэффициент теплового эффекта
химической реакции равен изменению теплоёмкости системы в ходе реакции.

Закон излучения Кирхгофа:
Отношение излучательной способности любого тела
к его поглощательной способности
одинаково для всех тел при данной температуре
для данной частоты и
не зависит от их формы и химической природы.

В электричестве применяются ПРАВИЛА Кирхгофа.

То, что эти Правила высокопарно именуют ЗАКОНАМИ на электротехнических специальностях в учебных заведениях, пусть не вводит в заблуждение.

Законы Кирхгофа были сформулированы для расчёта основных характреистик электрических цепей (для цепей постоянного электрического тока-сила тока, ЭДС, сопротивление) , (для переменных токов — импеданс, комплексный ток, комплексное напряжение) . Суть состоит в том, что Кирхгофу удалось получить две теоремы, которые позволяют разрешить систему дифференциальных уравнений (ну или систему обыкновенных линейных уравнений) . Причём формулировка теорем должна запоминаться в том виде, в каком она сформулирована. Для работы с цепью на практике применяются расшифровывающие указания (по ориентировке токов и др. ) .
Вот, можно перейти по этой ссылке и ознакомиться со всеми положениями этих законов:
https://ru.wikipedia.org/wiki/Законы_Кирхгофа

Применяют и такие формулировки для цепей постоянного тока (это самые простые — проще нет) :
1) 1 правило (закон) Кирхгофа: Алгебраическая сумма сил токов в проводниках, сходящихся в узле, равно нулю: I1+I2+. =0.

I1,I2 — токи протекающие на участках цепи 2) 2 правило (закон) Кирхгофа: Алгебраическая сумма падений напряжения в ветвях замкнутого контура равна алгебраической сумме ЭДС, действующих в этом контуре: I1R1+I2R2+. =E1+E2+.

E1,E2. -ЭДС участков цепи R1,R2. -сопротивление элементов на участках цепи

otvet.mail.ru

Популярное:

  • Нн с деепричастиями правило Нн с деепричастиями правило Причастия и деепричастия Правило: Если причастный оборот стоит после определяемого слова, то он с обеих сторон выделяется запятыми: Голубое южное небо, потемневшее от пыли, мутно. Правило: В […]
  • Сроки приказа о зачислении Порядок зачисления в ВУЗы Ответы на самые популярные вопросы по поводу зачисления в ВУЗы. 27 июля - все ВУЗы обязаны выложить пофамильные РАНЖИРОВАННЫЕ (здесь не важно, копии или оригиналы поданы абитуриентом, важны лишь […]
  • Уголовный закон статьи научные Актуальные проблемы системности уголовного закона Дата публикации: 05.05.2014 2014-05-05 Статья просмотрена: 104 раза Библиографическое описание: Бердников А. Н. Актуальные проблемы системности уголовного закона // Молодой […]
  • 7 закон ома 7 закон ома Из первой строки следует: при постоянном сопротивлении величина 1 / R тоже постоянна, поэтому сила тока прямо пропорциональна напряжению на концах участка цепи. Из второй строки: при постоянном напряжении сила тока […]
  • Пособие по расчету фундаментов под колонны 5. Конструирование фундаментов на естественном основании по колонны В курсовом проекте в качестве фундаментов на естественном основании под колонны рекомендуется использовать монолитные железобетонные фундаменты стаканного типа […]
  • Представительства без полномочий Представительство без полномочий. Коммерческое представительство. При отсутствии полномочий действовать от имени другого лица или при превышении таких полномочий сделка считается заключенной от имени и в интересах совершившего […]
  • Определение право собственности на недвижимость Глава 4.ГОСУДАРСТВЕННАЯ РЕГИСТРАЦИЯ ПРАВ НА НЕДВИЖИМОСТЬ И СДЕЛОК С НЕЙ 4.1. Право собственности на недвижимость Недвижимость как экономическая категория представляет собой физический объект и право собственности на него. В […]
  • Правило с двоеточием и тире Правила русской орфографии и пунктуации (1956) Пунктуация § 159. Двоеточие ставится перед перечислением, которым заканчивается предложение: 1. Если перечислению предшествует обобщающее слово (а нередко, кроме того, еще слова […]