Правила деления на 8

Содержание:

Деление в столбик

Для деления чисел из двух и более цифр (знаков) применяют деление в столбик.

По традиции, разбираться как делить столбиком будем на примере.

Для начала запишем делимое и делитель в столбик. Выглядеть это будет так:

Их частное (результат) будем записывать под делителем. У нас это цифра « 8 ».

Начинаем делить « 512 » на « 8 » следующим образом:

    Определяем неполное частное. Для этого слева направо сравниваем цифры делимого и делитель.

Берём « 5 ». Цифра « 5 » меньше « 8 », значит нужно взять еще одну цифру из делимого.


« 51 » больше « 8 ». Значит это неполное частное. Ставим точку в частном (под уголком делителя).

Для того, чтобы избежать ошибок, не забывайте определять количество цифр в частном.

Для этого посчитаем сколько цифр осталось в делимом, после неполного частного. У нас после « 51 » стоит только одно цифра « 2 ». Значит и добавляем в результат ещё одну точку.


Приступаем к делению. Вспоминая таблицу умножения на « 8 », находим ближайшее к « 51 » произведение.
« 6 · 8 = 48 »
Записываем цифру « 6 » в частное.

Записываем « 48 » под « 51 ».

При записи под неполном частным самая правая цифра неполного частного должна стоять над самой правой цифрой произведения.

Между « 51 » и « 48 » слева поставим « − » (минус). Вычтем по правилам вычитания в столбик « 48 » и под чертой запишем результат.


В остатке получилось « 3 ». Сравним остаток с делителем. « 3 » меньше « 8 ».

Если остаток получился больше делителя, значит мы ошиблись в расчете и есть произведение более близкое, чем то, которое взяли мы.

Спишем из делимого « 512 » цифру « 2 » к « 3 ».

Число « 32 » больше « 8 ». И опять по таблице умножения на « 8 », найдем ближайшее произведение.

В остатке получился ноль. Значит числа разделились нацело (без остатка).

math-prosto.ru

Правила деления на 8

Признак делимости — это правило, позволяющее быстро определить, является ли число кратным заранее заданному числу, без необходимости выполнять деление. Рассмотрим несколько основных признаков деления:

Признак делимости на 2 n
Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 5 n
Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 10 n -1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n — 1 тогда и только тогда, когда само число делится на 10 n — 1.

Признак делимости на 10 n
Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр — нули.

Признак делимости на 10 n +1
Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогда и только тогда, когда само число делится на 10 n + 1.

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры — нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = -22 делится на 11) — следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

www.math.com.ua

Признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10 без остатка. + Признаки делимости на 11,13,25,36.

Признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10 без остатка. + Признаки делимости на 11,13,25,36.

  • Признак делимости на 2:если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если нечетной цифрой, то число без остатка не делится на 2. Короче говоря, четное число делится на 2, нечетное не делится на 2.
  • Признак делимости на 3: если сумма цифр числа делится на 3, то и число делится на 3. Если сумма цифр не делится на 3, то и число не делится на 3. Примеры: а)276 делится на 3, так как 2 + 7 + 6 = 15, а 15 делится на 3; б)563 не делится на 3, так как 5 + 6 + 3 = 14, а 14 не делится на 3.
  • Признак делимости на 4: число делится на 4, если оканчивается на 00, или число, составленное из двух последних цифр данного числа, делится на 4. Примеры: а)78 536 делится на 4, так как 36 делится на 4; б)8422 не делится на 4, так как 22 не делится на 4.
  • Признак делимости на 5: если запись натурального числа оканчивается цифрами 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.а)370 и 1485 делятся без остатка на 5; б)числа 537 и 4008 без остатка на 5 не делятся.
  • Признак делимости на 6: число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае оно на 6 не делится. Примеры: а)2862 делится на 6, так как 2862 делится и на 2, и на 3; б)3754 не делится на 6, так как 3754 не делится на 3
  • Признак делимости на 8: число делится на 8, если оканчивается на 000, или число, составленное из трех последних цифр данного числа, делится на 4. Примеры: а)78 000 делится на 0, так как оканчивается на 000; б)8422 не делится на 8, так как 422 не делится на 8.
  • Признак делимости на 9: если сумма цифр числа делится на 9, то и само число делится на 9. Если сумма цифр числа не делится на 9, то и число не делится на 9. Примеры: а)5787 делится на 9, так как 5 + 7 + 8 + 7= 27, а 27 делится на 9; б)359 не делится на 9, так как 3 + 5 + 9 = 17, а 17 не делится на 9.
  • Признак делимости на 10: если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10. Примеры: а)680 делится на 10; б)104 не делится на 10 без остатка.

tehtab.ru

Признаки делимости натуральных чисел на 2, 3, 4, 5, 6, 9, 10, 11, 25 и разрядную единицу

Для упрощения деления натуральных чисел были выведены правила деления на числа первого десятка и числа 11, 25, которые объединены в раздел признаков делимости натуральных чисел. Ниже приводятся правила, по которым анализ числа без его деления на другое натуральное число даст ответ на вопрос, кратно ли натуральное число числам 2, 3, 4, 5, 6, 9, 10, 11, 25 и разрядной единице?

Натуральные числа, имеющие в первом разряде цифры (оканчивающиеся на) 2,4,6,8,0, называются четными .

Признак делимости чисел на 2

На 2 делятся все четные натуральные числа, например: 172, 94,67 838, 1670.

Признак делимости чисел на 3

На 3 делятся все натуральные числа, сумма цифр которых кратна 3. Например:
39 (3 + 9 = 12; 12 : 3 = 4);

16 734 (1 + 6 + 7 + 3 + 4 = 21; 21:3 = 7).

Признак делимости чисел на 4

На 4 делятся все натуральные числа, две последние цифры которых составляют нули или число, кратное 4. Например:
124 (24 : 4 = 6);
103 456 (56 : 4 = 14).

Признак делимости чисел на 5

На 5 делятся все натуральные числа, оканчивающиеся на 5 или 0. Например: 125; 10 720.

Признак делимости чисел на 6

На 6 делятся те натуральные числа, которые делятся на 2 и на 3 одновременно (все четные числа, которые делятся на 3). Например: 126 (б — четное, 1 + 2 + 6 = 9, 9 : 3 = 3).

Признак делимости чисел на 9

На 9 делятся те натуральные числа, сумма цифр которых кратна 9. Например:
1179 (1 + 1 + 7 + 9 = 18, 18 : 9 = 2).

Признак делимости чисел на 10

На 10 делятся все натуральные числа, оканчивающиеся на 0. Например: 30; 980; 1 200; 1 570.

Признак делимости чисел на 11

На 11 делятся только те натуральные числа, у которых сумма цифр, занимающих четные места, равна сумме цифр, занимающих нечетные места, или разность суммы цифр нечетных мест и суммы цифр четных мест кратна 11. Например:
105787 (1 + 5 + 8 = 14 и 0 + 7 + 7 = 14);
9 163 627 (9 + 6 + б + 7 = 28 и 1 + 3 + 2 = 6);
28 — 6 = 22; 22 : 11 = 2).

Признак делимости чисел на 25

На 25 делятся те натуральные числа, две последние цифры которых — нули или составляют число, кратное 25. Например:
2 300; 650 ( 50 : 25 = 2);

1 475 (75 : 25 = 3).

Признак делимости чисел на разрядную единицу

На разрядную единицу делятся те натуральные числа, у которых количество нулей больше или равно количеству нулей разрядной единицы. Например: 12 000 делится на 10, 100 и 1000.

shkolo.ru

Признаки делимости чисел

Признаки делимости чисел– это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Признак делимости на 2

Это один из самых простых признаков делимости. Звучит он так: если запись натурального числа оканчивается чётной цифрой, то оно чётно (делится без остатка на 2), а если запись числа оканчивается нечётной цифрой, то это число нечётно.
Другими словами, если последняя цифра числа равна 2, 4, 6, 8 или 0 — число делится на 2, если нет, то не делится
Например, числа: 234, 8270, 1276, 9038, 502 делятся на 2, потому что они чётные.
А числа: 235, 137, 2303
на 2 не делятся, потому что они нечетные.

Признак делимости на 3

У этого признака делимости совсем другие правила: если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
А значит, чтобы понять, делится ли число на 3, надо лишь сложить между собой цифры, из которых оно состоит.
Выглядит это так: 3987 и 141 делятся на 3, потому что в первом случае 3+9+8+7=27 (27:3=9 — делится без остака на 3), а во втором 1+4+1=6 (6:3=2 — тоже делится без остака на 3).
А вот числа: 235 и 566 на 3 не делятся, потому как 2+3+5=10 и 5+6+6=17 (а мы знаем, что ни 10 ни 17 не делятся на 3 без остатка).

Признак делимости на 4

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00, а во втором на 64, которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

Признак делимости на 5

И опять перед нами довольно простой признак делимости: если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Это значит, что любые числа, оканчивающиеся цифрами 0 и 5, например 12355 и 430, подпадают под правило и делятся на 5.
А, к примеру, 15493 и 564 не оканчиваются на цифру 5 или 0, а значит они не могут делиться на 5 без остатка.

Признак делимости на 6

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12:3=4 и 4+7+4=15, 15:3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6:3=2 и 4+4+7=15, 15:3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Признак делимости на 7

Этот признак делимости более сложный: число делится на 7, если результат вычитания удвоенной последней цифры из числа десятков этого числа делится на 7 или равен 0.
Звучит довольно запутанно, но на практике просто. Смотрите сами: число 959 делится на 7, потому что 95-2*9=95-18=77, 77:7=11 (77 делится на 7 без остатка). Причем если с полученным во время преобразований числом возникли сложности (из-за его размера сложно понять, делится оно на 7 или нет, то данную процедуру можно продолжать столько раз, сколько Вы сочтете нужным).
Например, 455 и 45801 обладают признаками делимости на 7. В первом случае все довольно просто: 45-2*5=45-10=35, 35:7=5. Во втором случае мы поступим так: 4580-2*1=4580-2=4578. Нам сложно понять, делится ли 4578 на 7, поэтому повторим процесс: 457-2*8=457-16=441. И опять воспользуемся признаком делимости, так как перед нами пока еще трехзначное число 441. Итак, 44-2*1=44-2=42, 42:7=6, т.е. 42 делится на 7 без остатка, а значит и 45801 делится на 7.
А вот числа 111 и 345 не делятся на 7, потому что 11-2*1=11-2=9 (9 не делится без остатка на 7) и 34-2*5=34-10=24 (24 не делится без остатка на 7).

Признак делимости на 8

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000, у второго 88:8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Признак делимости на 9

Этот признак делимости схож с признаком делимости на 3: если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например: 3987 и 144 делятся на 9, потому что в первом случае 3+9+8+7=27 (27:9=3 — делится без остака на 9), а во втором 1+4+4=9 (9:9=1 — тоже делится без остака на 9).
А вот числа: 235 и 141 на 9 не делятся, потому как 2+3+5=10 и 1+4+1=6 (а мы знаем, что ни 10 ни 6 не делятся на 9 без остатка).

Признаки делимости на 10, 100, 1000 и другие разрядные единицы

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 6540, 46400, 867000, 6450. из них все делятся на 10; 46400 и 867000 делятся еще и на 100; и лишь одно из них — 867000 делится на 1000.
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100.

Признак делимости на 11

Для того, чтобы выяснить, делится ли число на 11, надо получить разность сумм четных и нечетных цифр этого числа. Если данная разность равна 0 или делится на 11 без остатка, то и само число делится на 11 без остатка.
Чтобы было понятнее, предлагаю рассмотреть примеры: 2354 делится на 11, потому что (2+5)-(3+4)=7-7=0. 29194 тоже делится на 11, так как (9+9)-(2+1+4)=18-7=11.
А вот 111 или 4354 не делятся на 11, так как в первом случае у нас получается (1+1)-1=1, а во втором (4+5)-(3+4)=9-7=2.

Признак делимости на 12

Число 12 является составным. Его признаком делимости является соответствие признакам делимости на 3 и на 4 одновременно.
Например 300 и 636 соответствуют и признакам делимости на 4 (последние 2 цифры это нули или делятся на 4) и признакам делимости на 3 (сумма цифр и первого и втророго числа делятся на 3), а занчит, они делятся на 12 без остатка.
А вот 200 или 630 не делятся на 12, потому что в первом случае число отвечает лишь признаку делимости на 4, а во втором — лишь признаку делимости на 3. но не обоим признакам одновременно.

Признак делимости на 13

Признаком делимости на 13 является то, что если число десятков числа, сложенное с умноженными на 4 единицами этого числа, будет кратно 13 или равно 0, то и само число делится на 13.
Возьмем для примера 702. Итак, 70+4*2=78, 78:13=6 (78 делится без остатка на 13), значит и 702 делится на 13 без остатка. Еще пример — число 1144. 114+4*4=130, 130:13=10. Число 130 делится на 13 без остатка, а значит заданное число соответсвует признаку делимости на 13.
Если же взять числа 125 или 212, то получаем 12+4*5=32 и 21+4*2=29 соответсвенно, и ни 32 ни 29 не делятся на 13 без остатка, а значит и заданные числа не делятся без остатка на 13.

Делимость чисел

Как видно из вышеперечисленного, можно предположить, что к любому из натуральных чисел можно подобрать свой индивидуальный признак делимости или же «составной» признак, если число кратно нескольким разным числам. Но как показывает практика, в основном чем больше число, тем сложнее его признак. Возможно, время ,потраченное на проверку признака делимости, может оказаться равно или больше чем само деление. Поэтому мы и используем обычно простейшие из признаков делимости.

www.ww009.ru

Популярное:

  • Приказ 167 мчс гарант Приказ МЧС РФ от 5 апреля 2011 г. N 167 "Об утверждении Порядка организации службы в подразделениях пожарной охраны" (с изменениями и дополнениями) (утратил силу) Приказ МЧС РФ от 5 апреля 2011 г. N 167"Об утверждении Порядка […]
  • Какие пенсии у инвалидов 1 группы в москве Пенсия по инвалидности 1 группы в 2018 году Денежные выплаты от государства получают 16, 5 миллиона человек. 1 группа инвалидности назначается при определении у человека полной нетрудоспособности и нуждающегося в посторонней […]
  • Доплата к пенсии инвалиду 1 группы в 2018 году Пенсия по инвалидности 1 группы в 2018 году Денежные выплаты от государства получают 16, 5 миллиона человек. 1 группа инвалидности назначается при определении у человека полной нетрудоспособности и нуждающегося в посторонней […]
  • Налог с продажи квартиры ребёнка Налог на доход от продажи квартиры Ранее мы разбирали Имущественный вычет при покупке квартиры, Увеличить налоговый вычет за квартиру, Возврат налога при покупке квартиры, порядок действий, список документов. После этого у […]
  • Подать заявление в загс в ульяновске Свадебный кортеж ЗАГСы Ульяновска Дворец Бракосочетания Адрес: 432700 Ульяновск, ул. Гимова, 3. Тел. (8422) 44-30-24, 44-21-38, 44-06-62 (специалисты), 44-30-03 (архив) Подавать заявление за 5 недель до свадьбы, в среду и […]
  • Как проехать до перовского суда Перовский районный суд города Москвы Перовский районный суд города МосквыАдрес: 111398, г. Москва, ул. Кусковская, д.8, стр.1 Время работы Перовского районного суда города Москвы:Понедельник-четверг с 9:00 до 18:00Пятница с […]
  • Как оформить стенд фотографиями Мастер-класс «Стенд для фотографий» Анастасия Крючкова Мастер-класс «Стенд для фотографий» Хотела бы поделиться с Вами своей идеей создания стенда для фотографий. Каждому родителю приятно и любопытно увидеть фотографии своего […]
  • Органы опеки московского Органы опеки московского В связи с реорганизацией Управлений социальной защиты населения районов города Москвы путем их присоединения в состав Управлений социальной защиты населения административных округов города Москвы, […]