Правило умножения двузначных чисел на двузначные

УМНОЖЕНИЕ СТОЛБИКОМ ДВУЗНАЧНЫХ ЧИСЕЛ

Тренажер по математике

Программа — тренажер по математике для закрепления навыков умножения столбиком двузначных чисел.

Предлагается 20 примеров для решения. Два случайных двузначных числа нужно умножить столбиком.

Для перехода к началу решения примеров нажимаем кнопку «START»

В левой верхней части страницы тренажера по математике указывается число примеров, которые осталось решить.

В правой части страницы пример, который нужно решить. В левой части этот же пример записан столбиком.

Клавишами управления курсором передвигаемся вверх/вниз/вправо/влево по клеточками. Нажимаем на клавиатуре кнопки 0-9 и вводим промежуточные ответы и итоговый ответ.

В случае, если пример решен верно, начисляется 5 очков. Если дать правильный ответ три раза подряд — начисляется бонус.

За неправильный ответ вычитается 3 очка.

Ошибки, допущенные в ходе вычисления, исправляются красным цветом. Сразу будет видно на каком этапе вычислений допущена ошибка.

В итоговой страничке тренажера по математике представлены результаты: количество очков, ошибок, бонусов.

Если при умножении столбиком были допущены ошибки, ниже будут перечислены примеры, в которых они были.

cool-kid.ru

Как быстро умножать двузначные числа в уме?

Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.

Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.

Выбираем традиционные методы

Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.

Умножение с помощью разложения чисел

Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.

Например, для умножения 38 на 57 необходимо:

  • разложить число на (30+8)*(50+7);
  • 30*50 = 1500 – запомнить результат;
  • 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
  • (1500 + 610) + 8*7 = 2110 + 56 = 2166

Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.

Умножение в столбик в уме

Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:

  • 47*1 = 47 – запомнить;
  • 47*8 = 376 – запоминаем;
  • 376*10 + 47 = 3807.

Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым.

Приведенные выше способы умножения универсальны. Но знание более эффективных алгоритмов для некоторых чисел намного сократит количество расчетов.

Умножение на 11

Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.

Достаточно между цифрами множителя вставить их сумму:
13*11 = 1(1+3)3 = 143

Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10.
28*11 = 2 (2+8) 8 = 308

Умножение больших чисел

Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.

  • Каждое число необходимо представить как разницу 100 и еще одного числа:
    (100 — 13)*(100 — 9)
    Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.
    87 – 9 = 78
    91 – 13 = 78
  • Вторые две цифры ответа — результат перемножения вычитаемых из двух скобок.13*9 = 144
  • В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944.

Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.

Поделитесь этим постом с друзьями

interesno.cc

Урок 3. Традиционное умножение в уме

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга. В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ – раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 — запоминаем
  • Второе действие: 60*5+3*80 = 540 – запоминаем
  • Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ – арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ — мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 – запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 – тут посложнее, но вы можете начинать называть первое число, в котором уверены – «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше – вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

4brain.ru

Урок 6. Умножение в уме любых чисел до 100

Чтобы умножать любые числа до 100 в уме важно быстро подобрать нужный алгоритм. Для удобства этого подбора в данном уроке выделены наиболее удобные случаи для каждой методики умножения. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

Универсальные методики

Применимость универсальных методик умножения чисел до 100 такова:

Использование одного опорного числа (Урок 5):

  • все числа в диапазонах до 30, 40-60, 85-100 – если оба множителя рядом с опорным числом.
    Например: 13*17, 18*23, 29*22, 53*61, 88*97 и т.д.
  • если одно число очень близко к удобному опорному (+/- 3 от 10, 20, 50, 100), второе может быть любым.
    Например: 21*67 (21 близко к 20), 48*33 (48 близко к 50), 98*32 (98 близко к 100)

Использование двух опорных чисел (Урок 5):

  • Если одно опорное число является кратным другому и если одно из опорных чисел является удобным (10, 20, 50, 100)
    Например: 98*24, 12*44, 43*103, 23*62

Иные числа удобно умножать традиционными методами из третьего урока, когда разряды десятков и единиц не очень большие (Урок 3). Кроме того, традиционный метод удобен, когда вы не знаете, какой другой метод вам применить.

Частные методики

Также полезно помнить о частных методиках, существенно упрощающих решение некоторых примеров:

Умножение на 10, 20, 25, 50 – должно осуществляться практически на автомате (Урок 2):

  • Например: 88*25 = 2200 (деление на 4)

Умножение на 11 всегда по методике из урока 4

Числа, заканчивающиеся на 5 удобно возводить в квадрат по методу из четвёртого урока

Любые числа удобно возводить в квадрат используя формулы сокращенного умножения четверного урока

  • Например: 69*69 = (70-1) 2 = 70 2 – 70*2*1 + 1 2 = 4 900-140+1 = 4 761

Теперь, вы имеете серьезный алгоритмический аппарат для решения примеров на умножение чисел до 100. Кроме того, вы уже можете умножать и некоторые примеры с множителями больше 100. Главным фактором, влияющим на вашу способность умножать в уме, в дальнейшем должен стать опыт и тренировка. Пройти тренировку можно ниже.

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

4brain.ru

Правило умножения двузначных чисел на двузначные

Интересно, сколько людей не воткнули, что это тот же столбик, которому их учили в 3-4 классе, только по-другому записанный.

а можно попродробнее? в каком именно месте это «тот же столбик»?

возьми и перемножь 64*38 обоими способами, в итоге делаешь одно и то же — умножаешь и складываешь цифры в несколько действий.

Ну а ничего, что такой способ годится только для вариантов, когда одно из чисел от 90 до 99. Иначе :

32 * 45 =
1. 32 — 55 = — 13
2. 68 * 55 = .
А ответ 1440

Запоминать способ для вариантов, где один из множителей в диапазоне 10 чисел.. ну несерьезно, передай Кондрашеву А.А.

Здравствуйте, а Вы не нашли название этой книги?

Приношу искренние извинения за своевременность.

Прошу прощения за столь поздний ответ — планировал поискать её на новогодних праздника.

К сожалению саму книгу найти не смог. Пытался узнать её по внешнему виду в интернете — тоже ничего не вышло.

Я и не рассчитывала на ответ. Спасибо, что уделили время на поиски книги! Ну, с кем не бывает, не всегда выходит найти искомое.

Почитай книгу эту, там все расписано подробно, комментарию 3 года, написано в спешке.

Я забыл в финальном этапе, что 18 надо умножить на 5 и прибавить к 1350. 18*5 = 90. 1350+90 = 1440, твое число.

у меня так же я перемножала 42*37

А я лет с 11-13 научилась умножать в уме числа 3х, 4х значные, 5тизначные на 2хзначные, например. Я просто в уме вижу перед собой листок и решаю на нем пример, элементарное умножение в столбик.
Конечно, эту процедуру можно и на листочке производить, но листочек память не тренирует)))

А двухзначные раскладываю на близкие круглые числа, потом прибавляю или отнимаю недостающие единицы

pikabu.ru

Популярное:

  • Приказ о утверждении правил приема в доу Приказ об утверждении правил приема муниципальное автономное дошкольное образовательное учреждение детский сад комбинированного вида № 3 села Коноково муниципального образования Успенский район 352464 Краснодарский край, […]
  • Центр экспертизы и координации информатизации Центр экспертизы и координации информатизации ЦИПР-2018: Цифровизация отраслей российской экономики Июн 09, 2018 6-8 июня в Иннополисе состоялась конференция «Цифровая индустрия промышленности». Директор ФГБУ «ЦЭКИ» Роман […]
  • Пособие по беременности в 2014 Пособия в 2014 году В соответствии с Федеральным законом № 349-ФЗ от 02 декабря 2013 года «О федеральном бюджете на 2014 год и на плановый период 2015 и 2016 годов» размеры государственных пособий гражданам, имеющим детей, […]
  • Приказы мчс по гдзс Газодымозащитная служба Газодымозащитная служба Деятельность ГДЗС выполняется в соответствии с требованиями приказов МЧС России от 09.01.2013 №3 «Об утверждении Правил проведения личным составом ФПС ГПС АСР при тушении с […]
  • Договор поручения защита прав потребителя РЕШЕНИЯ СУДОВ Решение суда. Дело № 2-590 09 февраля 2011 года Именем Российской Федерации Выборгский районный суд Санкт-Петербурга в составе: судьи Симоновой И. Е. при секретаре Новоселовой О. П., рассмотрев в открытом судебном […]
  • Кто прокурор в гшахты График приема в Прокуратуре Прокуратура города Шахты расположена по адресу: ул. Шевченко, 80 Прокурор города Шахты старший советник юстиции Петренко Евгений Александрович Зам. прокурора советник юстиции Яценко Д.А. Зам. […]
  • Акт об отказе в подписи в приказе Акт об отказе от подписи В случае отказа расписаться в официальном или ином документе не стоит нервничать – составьте акт об отказе от подписи. Как и акт об отказе от получения, такой документ фиксирует тот факт, что лицо […]
  • Формы заявления о рождении Единовременное пособие при рождении ребенка Существующая система государственной социальной помощи в России предусматривает несколько видов компенсационных и стимулирующих выплат, предоставляемых семьям по случаю рождения детей. […]