Сокращение алгебраических дробей правило

Алгебраические дроби. Сокращение алгебраических дробей

Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.

Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.

Примеры алгебраических дробей.

Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).

Сокращение алгебраической дроби

Алгебраическую дробь можно сокращать. При сокращении пользуются правилами сокращения обыкновенных дробей.

Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.

Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.

Рассмотрим пример сокращения алгебраической дроби.

Определим наименьшую степень, в которой стоит одночлен « a » . Наименьшая степень для одночлена « a » находится в знаменателе — это вторая степень.

Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.

Напоминаем, что любая буква или число в нулевой степени — это единица.

Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.

Краткая запись сокращения алгебраической дроби выглядит следующим образом.

Сокращать можно только одинаковые буквенные множители.

Нельзя сокращать

Можно сокращать

Другие примеры сокращения алгебраических дробей.

Как сократить дробь с многочленами

Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.

Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!

Ни в коем случае нельзя сокращать часть многочлена внутри скобок!

Неправильно

Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.

После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.

Примеры сокращения алгебраических дробей с многочленами.

Вынесение общего множителя при сокращении дробей

Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.

В таком виде сократить алгебраическую дробь нельзя, так как многочлен
« (3f + k) » можно сократить только со многочленом « (3f + k) ».

Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».

Сокращение дробей с помощью формул сокращенного умножения

В других примерах для сокращения алгебраических дробей требуется
применение формул сокращенного умножения.

В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.

Но если применить формулу разности квадратов для многочлена « (a 2 − b 2 ) », то одинаковые многочлены появятся.

Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.

math-prosto.ru

Сокращение алгебраических дробей

Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

Сокращать можно только множители!

Члены многочленов сокращать нельзя!

Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

Рассмотрим примеры сокращения дробей.

В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.

Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а при делении степеней показатели вычитаем.

a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

b и b сокращаем на b, полученные в результате единицы не пишем.

c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо многочлены разложить на множители. В числителе есть общий множитель 4x. Выносим его за скобки:

И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

Многочлен в числителе состоит из 4 слагаемых. Группируем первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

В числителе вынесем за скобки общий множитель (x+2):

Сокращаем дробь на (x+2):

Сокращать можем только множители! Чтобы сократить данную дробь, нужно стоящие в числителе и знаменателе многочлены разложить на множители. В числителе общий множитель a³, в знаменателе — a⁵. Вынесем их за скобки:

Множители — степени с одинаковым основанием a³ и a⁵ — сокращаем на a³. От a³ остается 1, мы ее не пишем, от a⁵ остается a². В числителе выражение в скобках можно разложить как разность квадратов:

Сокращаем дробь на общий делитель (1+a):

А как сокращать дроби вида

в которых стоящие в числителе и знаменателе выражения отличаются только знаками?

Примеры сокращения таких дробей мы рассмотрим в следующий раз.

2 комментария

Очень хороший сайт,каждый день им пользуюсь, и помогает.
До того как я наткнулся на этот сайт,я не умел многое решать по алгебре, геометрии,но благодаря этому сайту мои оценки а 3 поднялись на 4-5.
Теперь я могу смело сдавать ОГЭ,и нн боятся что его не сдам!
Учитесь,и у Вас все получится!

Витя, желаю Вам успехов в учебе и высоких результатов на экзаменах!

www.algebraclass.ru

Сокращение алгебраических дробей правило

Сокращение алгебраических дробей

Новое понятие в математике редко возникает «из ничего», «на пустом месте». Оно появляется тогда, когда в нем ощущается объективная необходимость. Именно так появились в математике отрицательные числа, так появились обыкновенные и десятичные алгебраической дроби.

Предпосылки для введения нового понятия «алгебраическая дробь» у нас имеются. Давайте вернемcя к § 12. Обсуждая там деление одночлена на одночлен, мы рассмотрели ряд примеров. Выделим два из них.

1. Разделить одночлен 36а 3 b 5 на одночлен 4ab 2 (см. пример 1в) из §12).
Решали мы его так. Вместо записи 36а 3 b 5 : 4аb 2 использовали черту дроби:

Это позволило вместо записей 36 : 4, а 3 : а, b 5 : b 2 также использовать черту дроби, что сделало решение примера более наглядным:

2. Разделить одночлен 4x 3 на одночлен 2ху (см. пример 1 д) из § 12). Действуя по тому же образцу, мы получили:

В § 12 мы отметили, что одночлен 4x 3 не удалось разделить на одночлен 2ху так, чтобы получился одночлен. Но ведь математические модели реальных ситуаций могут содержать операцию деления любых одночленов, не обязательно таких, что один делится на другой. Предвидя это, математики ввели новое понятие — понятие алгебраической дроби. В частности, алгебраическая дробь. Теперь вернемся к § 18. Обсуждая там операцию деления многочлена на одночлен, мы отметили, что она не всегда выполнима. Так, в примере 2 из § 18 речь шла о делении двучлена 6х 3 — 24x 2 на одночлен 6х 2 . Эта операция оказалась выполнимой и в результате мы получили двучлен х — 4. Значит, Иными словами, алгебраическое выражение удалось заменить более простым выражением — многочленом х — 4.

В то же время в примере 3 из § 18 не удалось разделить многочлен 8a 3 + Ьа 2b — b на 2а 2 , т. е. выражение не удалось заменить более простым выражением, пришлось так и оставить его в виде алгебраической дроби.

Что же касается операции деления многочлена на многочлен, то мы о ней фактически ничего не говорили. Единственное, что мы можем сейчас сказать: один многочлен можно разделить на другой, если этот другой многочлен является одним из множителей в разложении первого многочлена на множители.

Например, х 3 — 1 = (х — 1) (х 2 + х + 1). Значит, х 3 — 1 можно разделить на х 2 + х + 1, получится х — 1; х 3 — 1 можно разделить на х — 1,

получится х 2 + х + 1.
многочленов Р и Q. При этом используют запись
где Р — числитель, Q — знаменатель алгебраической дроби.
Примеры алгебраических дробей:

Иногда алгебраическую дробь удается заменить многочленом. Например, как мы уже установили ранее,

(многочлен 6x 3 — 24x 2 удалось разделить на 6x 2 , при этом в частном получается x — 4); мы также отмечали, что

Но так бывает сравнительно редко.

Впрочем, похожая ситуация уже встречалась вам — при изучении обыкновенных дробей. Например, дробь — можно заменить целым числом 4, а дробь — целым числом 5. Однако дробь — целым числом заменить не удается, хотя эту дробь можно сократить, разделив числитель и знаменатель на число 8 — общий множитель числителя и знаменателя:
Точно так же можно сокращать алгебраические дроби, разделив одновременно числитель и знаменатель дроби на их общий множетель. А для этого надо разложить и числитель, и знаменатель дроби на множители. Здесь нам и понадобится все то, что мы так долго обсуждали в этой главе.

Пример. Сократить алгебраическую дробь:

Решение, а) Найдем общий множитель для одночленов
12х 3 у 4 и 8х 2 у 5 так, как мы делали в § 20. Получим 4х 2 у 4 . Тогда 12x 3 y 4 = 4x 2 y 4 • Зх; 8x 2 y 5 = 4x 2 y 4 • 2у.
Значит,


Числитель и знаменатель заданной алгебраической дроби сократили на общий множитель 4х 2 у 4 .
Решение этого примера можно записать по-другому:

б) Чтобы сократить дробь, разложим ее числитель и знаменатель на множители. Получим:

(дробь сократили на общий множитель а + b).

А теперь вернитесь к замечанию 2 из § 1. Видите, данное там обещание мы наконец-то смогли выполнить.
в) Имеем:

(сократили дробь на общий множитель числителя и знаменателя, т. е. на х (x — у))

Итак, для того чтобы сократить алгебраическую к дробь, нужно прежде всего разложить на множители ее числитель и знаменатель. Так что ваш успех в этом новом деле (сокращении алгебраических дробей) в основном зависит от того, как вы усвоили материал предыдущих параграфов этой главы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

edufuture.biz

Сокращение алгебраических дробей: правило, примеры.

Продолжаем изучение темы преобразование алгебраических дробей. В этой статье мы подробно остановимся на сокращении алгебраических дробей. Сначала разберемся, что понимают под термином «сокращение алгебраической дроби», и выясним, всегда ли алгебраическая дробь сократима. Дальше приведем правило, позволяющее проводить это преобразование. Наконец, рассмотрим решения характерных примеров, которые позволят уяснить все тонкости процесса.

Навигация по странице.

Что значит сократить алгебраическую дробь?

Изучая обыкновенные дроби, мы говорили про их сокращение. Сокращением обыкновенной дроби мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9 .

Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен, в частности, одночлен или число.

Например, алгебраическую дробь можно сократить на число 3 , что даст дробь . Также можно выполнить сокращение на переменную x , что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x , а также на любой из многочленов x+2·y , 3·x+6·y , x 2 +2·x·y или 3·x 2 +6·x·y .

Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби.

Любая ли алгебраическая дробь подлежит сокращению?

Нам известно, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. Несократимые дроби не имеют отличных от единицы общих множителей в числителе и знаменателе, следовательно, не подлежат сокращению.

Алгебраические дроби также могут иметь общие множители числителя и знаменателя, а могут и не иметь. При наличии общих множителей возможно сокращение алгебраической дроби. Если же общих множителей нет, то упрощение алгебраической дроби посредством ее сокращения невозможно.

В общем случае по внешнему виду алгебраической дроби достаточно сложно определить, возможно ли выполнить ее сокращение. Несомненно, в некоторых случаях общие множители числителя и знаменателя очевидны. Например, хорошо видно, что числитель и знаменатель алгебраической дроби имеют общий множитель 3 . Также несложно заметить, что алгебраическую дробь можно сократить на x , на y или сразу на x·y . Но намного чаще общего множителя числителя и знаменателя алгебраической дроби сразу не видно, а еще чаще – его просто нет. К примеру, дробь возможно сократить на x−1 , но этот общий множитель явно не присутствует в записи. А алгебраическую дробь сократить невозможно, так как ее числитель и знаменатель не имеют общих множителей.

Вообще, вопрос о сократимости алгебраической дроби очень непростой. И порой проще решить задачу, работая с алгебраической дробью в исходном виде, чем выяснить, можно ли эту дробь предварительно сократить. Но все же существуют преобразования, которые в некоторых случаях позволяют с относительно небольшими усилиями найти общие множители числителя и знаменателя, если таковые имеются, либо сделать вывод о несократимости исходной алгебраической дроби. Эта информация будет раскрыта в следующем пункте.

Правило сокращения алгебраических дробей

Информация предыдущих пунктов позволяет естественным образом воспринять следующее правило сокращения алгебраических дробей, которое состоит из двух шагов:

  • сначала находятся общие множители числителя и знаменателя исходной дроби;
  • если таковые имеются, то проводится сокращение на эти множители.

Указанные шаги озвученного правила нуждаются в разъяснении.

Самый удобный способ отыскания общих заключается в разложении на множители многочленов, находящихся в числителе и знаменателе исходной алгебраической дроби. При этом сразу становятся видны общие множители числителя и знаменателя, либо становится видно, что общих множителей нет.

Если общих множителей нет, то можно делать вывод о несократимости алгебраической дроби. Если же общие множители обнаружены, то на втором шаге они сокращаются. В результате получается новая дробь более простого вида.

В основе правила сокращения алгебраических дробей лежит основное свойство алгебраической дроби, которое выражается равенством , где a , b и c – некоторые многочлены, причем b и c – ненулевые. На первом шаге исходная алгебраическая дробь приводится к виду , из которого становится виден общий множитель c , а на втором шаге выполняется сокращение – переход к дроби .

Переходим к решению примеров с использованием данного правила. На них мы и разберем все возможные нюансы, возникающие при разложении числителя и знаменателя алгебраической дроби на множители и последующем сокращении.

Характерные примеры

Для начала нужно сказать про сокращение алгебраических дробей, числитель и знаменатель которых одинаковые. Такие дроби тождественно равны единице на всей ОДЗ входящих в нее переменных, например, и т.п.

Теперь не помешает вспомнить, как выполняется сокращение обыкновенных дробей – ведь они являются частным случаем алгебраических дробей. Натуральные числа в числителе и знаменателе обыкновенной дроби раскрадываются на простые множители, после чего общие множители сокращаются (при их наличии). Например, . Произведение одинаковых простых множителей можно записывать в виде степеней, а при сокращении пользоваться свойством деления степеней с одинаковыми основаниями. В этом случае решение выглядело бы так: , здесь мы числитель и знаменатель разделили на общий множитель 2 2 ·3 . Или для большей наглядности на основании свойств умножения и деления решение представляют в виде .

По абсолютно аналогичным принципам проводится сокращение алгебраических дробей, в числителе и знаменателе которых находятся одночлены с целыми коэффициентами.

Сократите алгебраическую дробь .

Можно представить числитель и знаменатель исходной алгебраической дроби в виде произведения простых множителей и переменных, после чего провести сокращение:

Но более рационально решение записать в виде выражения со степенями:

.

Что касается сокращения алгебраических дробей, имеющих дробные числовые коэффициенты в числителе и знаменателе, то можно поступать двояко: либо отдельно выполнять деление этих дробных коэффициентов, либо предварительно избавляться от дробных коэффициентов, умножив числитель и знаменатель на некоторое натуральное число. Про последнее преобразование мы говорили в статье приведение алгебраической дроби к новому знаменателю, его можно проводить в силу основного свойства алгебраической дроби. Разберемся с этим на примере.

Выполните сокращение дроби .

Можно сократить дробь следующим образом: .

А можно было предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, то есть, на НОК(5, 10)=10 . В этом случае имеем .

.

Можно переходить к алгебраическим дробям общего вида, у которых в числителе и знаменателе могут быть как числа и одночлены, так и многочлены.

При сокращении таких дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель алгебраической дроби разложить на множители.

Сократите рациональную дробь .

Для этого разложим на множители многочлены в числителе и знаменателе. Начнем с вынесения за скобки: . Очевидно, выражения в скобках можно преобразовать, используя формулы сокращенного умножения: . Теперь хорошо видно, что можно провести сокращение дроби на общий множитель b 2 ·(a+7) . Сделаем это .

Краткое решение без пояснений обычно записывают в виде цепочки равенств:

.

Иногда общие множители могут быть скрыты числовыми коэффициентами. Поэтому при сокращении рациональных дробей целесообразно числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Сократите дробь , если это возможно.

На первый взгляд числитель и знаменатель не имеют общего множителя. Но все же, попробуем выполнить некоторые преобразования. Во-первых, можно вынести за скобки множитель x в числителе: .

Теперь проглядывается некоторая схожесть выражения в скобках и выражения в знаменателе за счет x 2 ·y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

После проделанных преобразований виден общий множитель, на который и проводим сокращение. Имеем

.

Завершая разговор о сокращении рациональных дробей заметим, что успех во многом зависит от умения раскладывать многочлены на множители.

www.cleverstudents.ru

Математика

Строка навигации

Сокращение алгебраических дробей

Опираясь на вышеуказанное свойство, мы можем упрощать алгебраические дроби так же, как это делают с арифметическими дробями, сокращая их.

Сокращение дробей состоит в том, что числителя и знаменателя дроби делят на одно и то же число.

Если алгебраическая дробь одночленная, то числитель и знаменатель представляется в виде произведения нескольких множителей, и сразу видно, на какие одинаковые числа можно их разделить:

Ту же дробь мы можем написать подробнее: . Мы видим, что последовательно можно делить и числителя и знаменателя 4 раза на a , т. е. в конце-концов разделить каждого из них на a 4 . Поэтому ; также и т. п. Итак, если в числителе и знаменателе имеются множителями различные степени одной и той же буквы, то можно сократить эту дробь на меньшую степень этой буквы.

Если дробь многочленная, то приходится сначала эти многочлены разложить, если возможно, на множители, и тогда явится возможность увидать, на какие одинаковые множители можно делить и числителя и знаменателя.

…. числитель легко раскладывается на множители «по формуле» – он представляет собой квадрат разности двух чисел, а именно (x – 3) 2 . Знаменатель к формулам не подходит и придется его разлагать приемом, употребляемым для квадратного трехчлена: подыщем 2 числа, так, чтобы их сумма равнялась –1 и их произведение = –6, – эти числа суть –3 и + 2; тогда x 2 – x – 6 = x 2 – 3x + 2x – 6 = x (x – 3) + 2 (x – 3) = (x – 3) (x + 2).

maths-public.ru

Популярное:

  • Правила превращения пешек Краткие правила игры в шахматы ШАХМАТНАЯ ДОСКА И НОТАЦИЯ Шахматы - игра для двоих. Один игрок (Белые) использует фигуры белого цвета, а второй игрок (Черные) обычно играет фигурами черного цвета. Доска разделена на 64 маленьких […]
  • Правило как упрощать выражения Упрощение выражений Свойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с помощью этих свойств упрощать […]
  • Инерция правила Инерция правила Динамика – это раздел механики, в котором изучают движение тел под действием приложенных к ним сил. В биомеханике также рассматривают взаимодействие между телом человека и внешним окружением, между звеньями тела, […]
  • Правило буквы ё о после шипящих в суффиксах Буквы е (ё), о после шипящих в корне слова. Правило и примеры Написание букв «е» (ё) или «о» после шипя­щих в корне слов выбе­рем, вос­поль­зо­вав­шись соот­вет­ству­ю­щим пра­ви­лом рус­ской орфо­гра­фии. Посмотрим, как […]
  • Оствальда закон разбавления Оствальда закон разбавления 4.6 Закон разбавления Оствальда Степень диссоциации (αдис) и константа диссоциации (Кдис) слабого электролита количественно связаны между собой. Выведем уравнение этой связи на примере слабой […]
  • Тело колеблется по закону Механические и электромагнитные колебания 4. Колебания и волны 1. Гармонические колебания величины s описываются уравнением s = 0,02 cos (6πt + π/3), м. Определите: 1) амплитуду колебаний; 2) циклическую частоту; 3) частоту […]
  • Степени правила умножения Как умножать степени Как умножать степени? Какие степени можно перемножить, а какие — нет? Как число умножить на степень? В алгебре найти произведение степеней можно в двух случаях: 1) если степени имеют одинаковые основания; 2) […]
  • Информация о налогах в steam Информация о налогах в steam Случилось так, что я совершил 150 сделок купли-продажи карточек в Steam Market.И от меня попросили заполнить форму, дабы государству отсчитать положенные проценты. Что делать, как зоплнять ? […]