Закон сохранение момента количества движения

Закон сохранения момента импульса

В замкнутой системе выполняется закон сохранения момента импульса.

Вращающееся вокруг своей оси тело при отсутствии тормозящих вращение сил так и будет продолжать вращаться. Физики привычно объясняют этот феномен тем, что такое вращающееся тело обладает неким количеством движения, выражающимся в форме углового момента количества движения или, кратко, момента импульса или момента вращения. Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса. Если теперь допустить, что тело вращается не вокруг собственного центра массы, а вокруг некоего центра вращения, удаленного от него, оно всё равно будет обладать вращательным моментом импульса. В математическом представлении момент импульса L тела, вращающегося с угловой скоростью ω, равен L = Iω, где величина I, называемая моментом инерции, является аналогом инерционной массы в законе сохранения линейного импульса, и зависит она как от массы тела, так и от его конфигурации — то есть, от распределения массы внутри тела. В целом, чем дальше от оси вращения удалена основная масса тела, тем выше момент инерции.

Сохраняющейся или консервативной принято называть величину, которая не изменяется в результате рассматриваемого взаимодействия. В рамках закона сохранения момента импульса консервативной величиной как раз и является угловой момент вращения массы — он не изменяется в отсутствие приложенного момента силы или крутящего момента — проекции вектора силы на плоскость вращения, перпендикулярно радиусу вращения, помноженной на рычаг (расстояние до оси вращения). Самый расхожий пример закона сохранения момента импульса — фигуристка, выполняющая фигуру вращения с ускорением. Спортсменка входит во вращение достаточно медленно, широко раскинув руки и ноги, а затем, по мере того, как она собирает массу своего тела всё ближе к оси вращения, прижимая конечности всё ближе к туловищу, скорость вращения многократно возрастает вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции I, тем выше угловая скорость ω и, как следствие, короче период вращения, обратно пропорциональный ей.

Следует отметить, однако, что не любая приложенная извне сила сказывается на моменте вращения. Предположим, вы поставили свой велосипед «на попа» (колесами вверх) и сильно раскрутили одно из его колес. Понятно, что, приложив тормозящую силу трения к любой окружности колеса (нажав на ручной тормоз, приложив руку к резине или вращающимся спицам), вы, тем самым, снизите угловую скорость его вращения. Однако, сколько бы вы ни старались, вы не остановите вращения колеса, пытаясь воздействовать на ось вращения. Иными словами, для изменения момента вращения необходима не просто сила, а момент силы — то есть, сила, приложенная по направлению, отличному от направления оси вращения, и на некотором удалении от нее. Поэтому закон сохранения момента вращения можно сформулировать и несколько иначе: момент вращения тела изменяется только в присутствии момента силы, направленной на его изменение.

И тут возникает важное дополнительное замечание. До сих пор мы говорили об изменении момента вращения в плане ускорения или замедления вращения, как такового, но при этом тело продолжало вращаться всё в той же плоскости, и ось вращения не изменяла своей ориентации в пространстве. Теперь предположим, что момент силы приложен в плоскости, которая отличается от плоскости, в которой вращается тело. Такое воздействие неизбежно приведет к изменению направления оси вращения. В отсутствие же внешних воздействий закон сохранения момента импульса подразумевает, что направление оси вращения остается неизменным. Этот принцип широко используется в так называемых гироскопических навигационных приборах. В их основе лежит массивное, быстро вращающееся колесо — гироскоп, — которое не изменяет своей ориентации в пространстве, благодаря чему прибор стабильно указывает заданное направление, вне зависимости от угла поворота субмарины, самолета или спутника, на котором он установлен. С технической точки зрения гироскоп представляет собой массивный диск на осевых подшипниках низкого трения, раскрученный с очень большой скоростью. Идеальный гироскоп — это диск бесконечной массы, вращающийся с бесконечной скоростью в идеальном вакууме. В таком случае закон сохранения момента импульса подскажет нам, что направление оси такого идеального гироскопа не отклонится от исходной ни на одну угловую секунду, и он вечно будет указывать нам на изначально заданную точку. Искусственные спутники Земли, как правило, оснащаются несколькими независимыми гироскопами, вращающимися в разных плоскостях, и бортовая электроника, сопоставляя данные нескольких гироскопических компасов и усредняя поправки на возможные отклонения их показаний, безошибочно определяет координаты и ориентацию спутника в околоземном пространстве.

mirznanii.com

закон сохранения момента количества движения

Fizikos terminų žodynas : lietuvių, anglų, prancūzų, vokiečių ir rusų kalbomis. – Vilnius : Mokslo ir enciklopedijų leidybos institutas . Vilius Palenskis, Vytautas Valiukėnas, Valerijonas Žalkauskas, Pranas Juozas Žilinskas . 2007 .

Look at other dictionaries:

Закон сохранения момента количества движения — Закон сохранения момента импульса (закон сохранения углового момента) векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной. В соответствии с этим, момент импульса замкнутой системы относительно… … Википедия

ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА — (момента количества движения) момент импульса замкнутой системы в процессе движения не изменяется, если не происходит взаимодействия между частями этой системы … Большая политехническая энциклопедия

Закон сохранения энергии — Закон сохранения энергии фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… … Википедия

Закон сохранения импульса — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Момент количества движения — Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси… … Википедия

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ — (кинетический момент, угловой момент), одна из мер механич. движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращат. движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и… … Физическая энциклопедия

Момент количества движения — кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения (См. Вращательное движение). Как и для момента силы (См. Момент силы),… … Большая советская энциклопедия

Сохранения законы — физические закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённом классе процессов. Полное описание физической системы возможно лишь в рамках… … Большая советская энциклопедия

Закон всемирного тяготения — Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

Закон тяготения — Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

fizikoster_lt.enacademic.com

Закон сохранение момента количества движения

Обратимся к основному уравнению динамики вращательного движения

и рассмотрим частный случай, когда на тело либо вовсе не действуют внешние силы, либо они таковы, что их равнодействующая не дает момента относительно оси вращения Тогда

Но если изменение величины равно нулю, то, следовательно, сама величина остается постоянной:

Рис. 66. Сальто-мортале.

Итак, если на тело не действуют внешние силы (или результирующий момент их относительно оси вращения равен нулю), то момент количества движения тела относительно оси вращения остается неизменным. Этот закон носит название закона сохранения момента количества движения относительно оси вращения

Приведем несколько примерев, иллюстрирующих закон сохранения момента количества движения.

Гимнаст во время прыжка через голову (рис. 66) поджимает к туловищу руки и ноги. Этим он уменьшает свой момент инерции,

а так как произведение должно оставаться неизменным, то угловая скорость вращения возрастает, и в краткий промежуток времени, пока гимнаст находится в воздухе, он успевает сделать полный оборот.

Шарик привязан к нити, наматываемой на палку; по мере того как уменьшается длина нити, уменьшается момент инерции шарика и, следовательно, возрастает угловая скорость.

Рис. 67 Вращение человека, стоящего на скамье Жуковского. ускорится, если он опустит руки и замедлится если он их поднимет.

Рис. 68. Если мы поднимем велосипедное колесо над головой и приведем его во вращение, то сами вместе с платформой начнем вращаться в противоположную сторону.

Ряд интересных опытов можно проделать, встав на платформу, вращающуюся на шарикоподшипнике (скамья Жуковского). На рис. 67 и 68 изображены некоторые из этих опытов.

Сопоставляя уравнения, выведенные в последних параграфах, с законами прямолинейного поступательного движения, легко заметить, что формулы, определяющие вращательное движение около неподвижной оси, аналогичны формулам для прямолинейного поступательного движения.

В следующей таблице сопоставлены основные величины и уравнения, определяющие эти движения:

Гироскопы. Реактивный гироскопический эффект. Твердое тело, вращающееся с большой угловой скоростью вокруг оси полной симметрии (свободной оси), называют гироскопом. По закону сохранения вектора момента количества движения гироскоп стремится сохранить направление своей оси вращения неизменным в пространстве и проявляет тем большую устойчивость (т. е. оказывает тем большее сопротивление повороту оси вращения), чем больше его момент инерции и чем больше угловая скорость вращения.

Когда мы, удерживая на вытянутых руках какое-либо массивное неподвижное тело, сообщаем ему движение, например слева направо, то развиваемая телом сила инерции двигает нас в противоположном направлении. Проявление сил инерции вращающегося гироскопа, когда мы поворачиваем его ось вращения, оказывается более сложным и на первый взгляд неожиданным. Так, если мы, удерживая в руках горизонтально направленную ось вращения гироскопа, станем один конец оси приподнимать, а другой опускать, т. е. поворачивать ось в вертикальной плоскости, то почувствуем, что ось оказывает давление на руки не в вертикальной, а в горизонтальной плоскости, прижимая одну нашу руку и оттягивая другую. Если при рассматривании справа вращение гироскопа видно происходящим по движению часовой стрелки (т. е. момент количества движения гироскопа направлен горизонтально налево), то попытка поднять левый конец оси, опуская вниз правый, вызывает движение левого конца оси в горизонтальной плоскости от нас, а правого — на нас.

Такая реакция гироскопа (так называемый гироскопический эффект) объясняется стремлением гироскопа сохранить неизменным свой момент количества движения и притом сохранить его неизменным не только по величине, но и по направлению. Действительно, чтобы при описанном выше повороте оси вращения гироскопа в вертикальной плоскости на угол а (рис 69) момент количества движения геометрически оставался неизменным, гироскоп должен приобрести дополнительное вращение вокруг вертикальной оси с моментом количества движения таким, что геометрически

По указанной причине вращающийся гироскоп, уравновешенный на подвижной оси гирей (рис. 70), приобретает дополнительно

вращение вокруг вертикальной оси, если гирю, уравновешивавшую гироскоп, немного отодвинуть от точки опоры оси (перевешивая, гиря сообщает оси некоторый наклон, что и вызывает обращение оси гироскопа вокруг точки опоры в направлении, которое соответствует направлению вектора на рис. 69).

По той же причине ось волчка приобретает вследствие опрокидывающего действия силы тяжести круговое движение, которое называют прецессией (рис. 71).

Итак, если к вращающемуся гироскопу приложить пару сил, стремящуюся повернуть его около оси, перпендикулярной к оси вращения, то гироскоп действительно станет поворачиваться, но только вокруг третьей оси, перпендикулярной к первым двум. Чтобы повернуть вращающийся гироскоп (например, в направлении как показано на рис. 72), нужно к оси гироскопа приложить вращающий момент в плоскости, перпендикулярной к направлению поворота.

Рис. 71. Схема движения волчка.

Более детальный анализ явлений, аналогичных описанным выше, показывает, что гироскоп стремится расположить ось своего вращения таким образом, чтобы она образовала возможно меньший угол с осью вынуждаемого вращения и чтобы оба вращения совершались в одном и том же направлении.

Это свойство гироскопа используется в гироскопическом компасе, получившем широкое распространение в особенности в военном флоте. Гирокомпас представляет собой быстро вращающийся волчок (мотор трехфазного тока, делающий до 25 000 об/мин), который на особом поплавке плавает в сосуде со ртутью и ось которого устанавливается в плоскости меридиана. В данном случае источником внешнего вращающего момента является суточное вращение Земли вокруг ее оси. Под его действием ось вращения гироскопа стремится совпасть по направлению с осью вращения Земли, а так как вращение Земли действует на гироскоп непрерывно, то ось гироскопа, наконец, и принимает это положение, т. е. устанавливается вдоль меридиана, и продолжает в нем оставаться совершенно так же, как обычная магнитная стрелка.

Гироскопы часто применяют в качестве стабилизаторов. Их устанавливают для уменьшения качки на океанских пароходах.

Были сконструированы также стабилизаторы для однорельсовых железных дорог; массивный быстро вращающийся гироскоп, помещаемый внутри вагона однорельсовой дороги, препятствует опрокидыванию вагона. Роторы для гироскопических стабилизаторов изготовляют весом от 1 до 100 и более тонн.

В торпедах гироскопические приборы, автоматически действуя на рулевое управление, обеспечивают прямолинейность движения торпеды в направлении выстрела.

Рис. 73. Прецессия земной оси.

Суточное вращение Земли делает ее подобной гироскопу. Так как Земля представляет собой не шар, а фигуру, близкую к эллипсоиду, то притяжение Солнца создает равнодействующую, не проходящую через центр масс Земли (как было бы в случае шара). Вследствие этого возникает вращающий момент, который стремится повернуть ось вращения Земли перпендикулярно к плоскости ее орбиты (рис. 73). В связи с этим земная ось испытывает прецессионное движение (с полным оборотом примерно за 25 800 лет).

books.alnam.ru

Закон сохранения момента количества движения

Посмотрим теперь, что получается в случае большого количества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разумеется, мы уже знаем, что момент силы, действующий на любую i-ю частицу (т. е. произведение силы, действующей на i-ю частицу, на ее плечо), равен скорости изменения момента количества движения этой частицы, а момент количества движения i-й частицы в свою очередь равен произведению импульса частицы на его плечо. Допустим теперь, что мы сложили моменты сил xi всех частиц и назвали это полным моментом сил τ. Эта величина должна быть равна скорости изменения суммы моментов количества движения всех частиц Li. Эту сумму можно принять за определение новой величины, которую мы назовем полным моментом количества движения L. Точно так же, как импульс тела равен сумме импульсов составляющих его частиц, момент количества движения тела тоже равен сумме моментов составляющих его частиц. Таким образом, скорость изменения полного момента количества движения L равна полному моменту сил.

С непривычки может показаться, что полный момент сил — ужасно сложная штука. Ведь нужно учитывать все внутренние и внешние силы. Однако если мы вспомним, что по закону Ньютона силы действия и противодействия не только равны, но и (что особенно важно!) действуют по одной и той же прямой в противоположных направлениях (неважно, говорил ли об этом сам Ньютон или нет, неявно он подразумевал это), то два момента внутренних сил между двумя взаимодействующими частицами должны быть равны друг другу и направлены противоположно, поскольку для любой оси плечи их будут одинаковы. Поэтому все внутренние моменты сил взаимно сокращаются и получается замечательная теорема: скорость изменения момента количества движения относительно любой оси равна моменту внешних сил относительно этой же оси!

Итак, мы получили в руки мощную теорему о движении большого коллектива частиц, которая позволяет нам изучать общие свойства движения, не зная деталей его внутреннего механизма. Эта теорема верна для любого набора частиц, независимо от того, образуют ли они твердое тело или нет.

Особенно важным частным случаем этой теоремы является закон сохранения момента количества движения, который гласит: если на систему частиц не действуют никакие внешние моменты сил, то ее момент количества движения остается постоянным.

Рассмотрим один очень важный частный случай набора частиц, когда они образуют твердое тело, т. е. объект, который всегда имеет определенную форму и геометрический размер и может только крутиться вокруг какой-то оси. Любая часть такого объекта в любой момент времени расположена одинаковым образом относительно других его частей. Попытаемся теперь найти полный момент количества движения твердого тела. Если масса i-й частицы его равна mi, а положение ее (xi, yi), то задача сводится к определению момента количества движения этой частицы, поскольку полный момент количества движения равен сумме моментов количества движения всех таких частиц, образующих тело. Для движущейся по окружности точки момент количества движения равен, конечно, произведению ее массы на скорость и на расстояние до оси вращения, а скорость в свою очередь равна угловой скорости, умноженной на расстояние до оси:

Это выражение очень похоже на формулу для импульса, который равен произведению массы на скорость. Скорость при этом заменяется на угловую скорость, а масса, как видите, заменяется на некоторую новую величину, называемую моментом инерции I. Вот что играет роль массы при вращении! Уравнения (18.21) и (18.22) говорят нам, что инерция вращения тела зависит не только от масс составляющих его частичек, но и от того, насколько далеко расположены они от оси. Так что если мы имеем два тела равной массы, но в одном из них массы расположены дальше от оси, то его инерция вращения будет больше. Это легко продемонстрировать на устройстве, изображенном на фиг. 18.4. Масса М в этом устройстве не может падать слишком быстро, потому что она должна крутить тяжелый стержень. Расположим сначала массы т около оси вращения, причем грузик М будет как-то ускоряться. Однако после того, как мы изменим момент инерции, расположив массы т гораздо дальше от оси, мы увидим, что грузик М ускоряется гораздо медленнее, чем прежде. Происходит это вследствие возрастания инертности вращения, которая составляет физический смысл момента инерции — суммы произведений всех масс на квадраты их расстояний от оси вращения.

Между массой и моментом инерции имеется существенная разница, которая проявляется удивительным образом. Дело в том, что масса объекта обычно не изменяется, тогда как момент инерции легко изменить. Представьте себе, что вы встали на стол, который может вращаться без трения, и держите в вытянутых руках гантели, а сами медленно вращаетесь. Можно легко изменить момент инерции, согнув руки; при этом наша масса останется той же самой. Когда мы проделаем все это, то закон сохранения момента количества движения будет творить чудеса, произойдет нечто удивительное. Если моменты внешних сил равны нулю, то момент количества движения равен моменту инерции I1, умноженному на угловую скорость ω1, т. е. ваш момент количества движения равен I1ω1. Согнув затем руки, вы тем самым уменьшили момент инерции до величины I2. Но поскольку из-за закона сохранения момента количества движения произведение /со должно остаться тем же самым, то I1ω1 должно быть равно I2ω2. Так что если вы уменьшили момент инерции, то ваша угловая скорость в результате этого должна возрасти.

all-fizika.com

Законы сохранения энергии и момента импульса

Раздел 1. Краткие сведения теоретического характера

Раздел 2. Расчетная часть

Раздел 1. Краткие сведения теоретического характера

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МОМЕНТА ИМПУЛЬСА

Импульсом тела или количеством движения называют произведение массы тела на его скорость. P – векторная величина. Направление импульса тела совпадает с направлением скорости оси и равно нулю, момент импульса системы относительно этой же оси остается постоянным.

Любая частица обладает моментом импульса, независимо от формы траектории по которой она движется Момент импульса замкнутой системы относительно любой неподвижной точки не изменяется с течением времени

ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Для того чтобы решить данную задачу, необходимо использовать закон сохранения механической энергии, который гласит: Полная механическая энергия системы материальных точек, находящаяся под действием только консервативных сил, остается постоянной.

К – полная кинетическая энергия системы

Пвнутр ­ – полная внутренняя потенциальная энергия системы

Пвнешн – полная потенциальная энергия системы в поле внешних консервативных сил

При скольжении тела по гладкой сфере сила трения не действует, сохраняется его полная механическая энергия, что позволяет определить скорость тела в любой точке траектории. В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени. По мере движения тела его кинетическая энергия увеличивается, а потенциальная энергия уменьшается.

Кинетической энергией системы называется энергия механического движения этой системы.

Потенциальная энергия тела в поле сил тяжестиП (h) = mgh

Если на материальную точку действуют одновременно несколько сил, то каждая из них сообщает материальной точке ускорение согласно второму закону Ньютона, не зависящее от других сил.

Ускорение, приобретаемое материальной точкой, совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.

Раздел 2. Расчетная часть

С вершины гладкой сферы радиуса R соскальзывает небольшое тело массой m. Следует определить

1. На какой высоте H от основания полусферы тело оторвется от ее поверхности?

2. Изменение величины потенциальной энергии ΔΠ тела за время его движения от верщины полусферы до точки отрыва?

По мере движения тела по поверхности сферы его скорость увеличивается, а сила нормального давления на сферу со стороны тела уменьшается. Когда сила нормального давления обратится в нуль, тело оторвется от поверхности.

При скольжении тела по гладкой сфере сохраняется его полная механическая энергия, это позволит определить скорость тела в любой точке траектории

Второй закон Ньютона для тела имеет вид

Условие отрыва тела от поверхности

Примем за нулевой уровень потенциальной энергии тела центр 0 сферы. Тогда закон сохранения энергии для тела принимает вид

Принимая во внимание, что тело движется по окружности и подставив значение силы реакции в точке отрыва во второй закон Ньютона спроецируем полученное уравнение на радиальное направление

Подставим в полученное уравнение найденную из закона сохранения энергии скорость тела, определим угол

Подставим найденное значение скорости в уравнение второго закона Ньютона, получим

Находим высоту (отсчитываемую от центра сферы) на которой произойдет отрыв тела от поверхности

Изменение величины потенциальной энергии

П1 – потенциальная энергия в начале движения

П2 – потенциальная энергия в точке отрыва

1.На высоте H = 0,4м от основания полусферы тело оторвется от ее поверхности

2.Изменение величины потенциальной энергии ΔΠ тела за время его движения от вершины полусферы до точки отрыва равно 0,0588 Дж

mirznanii.com

Популярное:

  • Закон вступление в права наследства Основное содержание закона о наследстве Закон о наследстве регулирует особую процедуру, которая обусловливает переход прав и обязанностей, а также имущества умершего гражданина его родственникам или иным лицам, в том числе […]
  • Жалоба на методиста Если не устраивает заведующая детским садом … Вопрос: Добрый день! Г. Калининград. Скажите, пожалуйста, если родителей полностью не устраивает заведующая детским садом, могут ли они требовать от начальника управления образования […]
  • Бланк заявления иностранного гражданина по месту жительства Как составляется заявление иностранного гражданина или лица без гражданства о регистрации по месту жительства Житель другого государства, прибывший в РФ, должен подать в миграционную службу заявление иностранного гражданина или […]
  • Помощь юриста по автокредиту Суд по автокредиту – советы адвоката Если вы берете целевой кредит на покупку автомобиля, то купленная вами машина будет оформлена как залог. Грубо говоря, в случае невыплаты автокредита банк имеет право забрать у вас автомобиль […]
  • Счетчики на газ закон Президент РФ отменил обязательную установку счетчиков на газ Президент Владимир Путин подписал закон, который вносит поправку в закон № 261-ФЗ "Об энергосбережении. " и отменяет обязательную установку газовых счетчиков в […]
  • Когда пенсии за январь 2013 ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ Подписка на новости Письмо для подтверждения подписки отправлено на указанный вами e-mail. 27 декабря 2013 График выплаты пенсий, ЕДВ и иных социальных выплат за январь 2014 года […]
  • Получить пенсионные накопления по наследству Как унаследовать средства пенсионных накоплений наследодателя? Наследодатель при жизни вправе в любое время подать заявление в территориальный орган ПФР и определить конкретных лиц (правопреемников) и доли средств, которые […]
  • Основные признаки права собственности Понятие и основные признаки права собственности на природные объекты и ресурсы. ГК, Статья 209. Содержание права собственности. Право владения означает закрепленную законом возможность фактичес­кого обладания природным объектом, […]