Законы больших чисел чебышева

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

§ 5. ЗАКОНЫ БОЛЬШИХ ЧИСЕЛ.

2. Закон больших чисел Чебышева.

Имеет место следующее утверждение. Пусть — последовательность попарно независимых случайных величин, имеющих ограниченные в совокупности дисперсии, т. е. для любого i. Тогда, каково бы нибыло , справедливо соотношение

Смысл закона больших чисел Чебышева состоит в следующем. В то время как отдельная случайная величина может принимать значения, очень далекие от своего математического ожидания, средняя арифметическая большого числа случайных величин с вероятностью, близкой к единице, принимает значение, мало отличающееся от среднего арифметического их математических ожиданий.
Частный случай закона больших чисел Чебышева. Пусть — последовательность попарно независимых случайных величин, имеющих ограниченные в совокупности дисперсии, т. е. и одинаковые математические ожидания . Тогда, каково бы нибыло , справедливо соотношение

Это непосредственно следует из формулы (54), так как

Замечание. Говорят, что случайная величина сходится по вероятности к числу А, если при сколь угодно малом вероятность неравенства с увеличением n неограниченно приближается к единице. Сходимость по вероятности не означает, что . Действительно, в последнем случае неравенство выполняется для всех достаточно больших значений n. В случае же сходимости по вероятности это неравенство для отдельных сколь угодно больших значений n может не выполняться. Однако невыполнение неравенства для больших значений n есть событие очень редкое (маловероятное). Принимая это во внимание, частный случай закона больших чисел Чебышева можно сформулировать так.
Средняя арифметическая попарно независимых случайных величин , имеющих ограниченные в совокупности дисперсии и одинаковые математические ожидания , сходится по вероятности к а.
Поясним смысл частного случая закона больших чисел Чебышева. Пусть требуется найти истинное значение а некоторой физической величины (например, размер некоторой детали). Для этого будем производить ряд независимых друг от друга измерений. Всякое измерение сопровождается некоторой погрешностью (см. подробнее § 6, п. 1). Поэтому каждый возможный результат измерения есть случайная величина (индекс i — номер измерения). Предположим, что в каждом измерении нет систематической ошибки, т. е. отклонения от истинного значения а измеряемой величины в ту и другую стороны равновероятны. В этом случае математические ожидания всех случайных величин одинаковы и равны измеряемой величине а, т. е.
Предположим, наконец, что измерения производятся с некоторой гарантированной точностью. Это значит, что для всех измерений . Таким образом, мы находимся в условиях закона больших чисел Чебышева, а потому, если число измерений достаточно велико, то с практической достоверностью можно утверждать, что каково бы ни было , средняя арифметическая результатов измерений отличается от истинного значения а меньше, чем на

www.toehelp.ru

Законы больших чисел чебышева

Основными понятиями теории вероятностей являются понятия случайного события и случайной величины. При этом предсказать заранее результат испытания, в котором может появиться или не появиться то или иное событие или какое-либо определенное значение случайной величины, невозможно, так как исход испытания зависит от многих случайных причин, не поддающихся учету.

Однако при неоднократном повторении испытаний наблюдаются закономерности, свойственные массовым случайным явлениям. Эти закономерности обладают свойством устойчивости. Суть этого свойства состоит в том, что конкретные особенности каждого отдельного случайного явления почти не сказываются на среднем результате большой массы подобных явлений, а характеристики случайных событий и случайных величин, наблюдаемых в испытаниях, при неограниченном увеличении числа испытаний становятся практически не случайными.

Пусть производится большая серия однотипных опытов. Исход каждого отдельного опыта является случайным, неопределенным. Однако, несмотря на это, средний результат всей серии опытов утрачивает случайный характер, становится закономерным.

Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в теоремах, носящих общее название закона больших чисел.

Под законом больших чисел не следует понимать какой-то один общий закон, связанный с большими числами. Закон больших чисел — это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным.

К ним относятся теоремы Чебышева и Бернулли. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли — простейшим.

В основе доказательства теорем, объединенных термином «закон больших чисел», лежит неравенство Чебышева, по которому устанавливается вероятность отклонения от ее математического ожидания:

Пример 81. Устройство состоит из 100 независимо работающих элементов. Вероятность отказа каждого элемента за время равна 0,03. Оценить вероятность того, что абсолютная величина разности между числом (математическом ожиданием) отказов за время окажется: а) меньше двух; б) не меньше двух.

Решение. а). Обозначим через число отказавших элементов за время . Тогда [] = np = 100 ? 0,03 = 3 и [] = npq = 100 ? 0,03 ? 0,97 = 2,91 (см. пример ). Воспользуемся неравенством Чебышева:

подставив в него [] = 3, [] = 2,91, = 2, получим

б). События и противоположны, поэтому сумма их вероятностей равна единице. Следовательно,

Пример 82. Оценить вероятность события [] 0?

168. Каждая из 1000 независимых случайных величин имеет дисперсию, равную 4, а математические ожидания их одинаковы. Оцените вероятность того, что среднее арифметическое случайных величин отклонится от математического ожидания по абсолютной величине не более чем на 0,1.

III 169. Применима ли к последовательности случайных величин , , . , . имеющих равномерное распределение в промежутке ][, теорема Чебышева?

170. Пусть > 0 — неубывающая функция. Доказать, что если существует [ ([]], то

cito-web.yspu.org

Законы больших чисел чебышева

Практика изучения случайных явлений показывает, что хотя результаты отдельных наблюдений, даже проведенных в одинаковых условиях, могут сильно отличаться, в то же время средние результаты для достаточно большого числа наблюдений устойчивы и слабо зависят от результатов отдельных наблюдений.

Теоретическим обоснованием этого замечательного свойства случайных явлений является закон больших чисел. Названием «закон больших чисел» объединена группа теорем, устанавливающих устойчивость средних результатов большого количества случайных явлений и объясняющих причину этой устойчивости.

Простейшая форма закона больших чисел, и исторически первая теорема этого раздела — теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной.

Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение.

Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения этой случайной величины оказывается практически нормальным законом.

Теорема, приведенная ниже под названием «Закон больших чисел» утверждает, что при определенных, достаточно общих, условиях, с увеличением числа случайных величин их среднее арифметическое стремится к среднему арифметическому математических ожиданий и перестает быть случайным.

Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.

В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева. Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия.

Неравенство Чебышева. Если случайная величина x имеет дисперсию, то для любого e > 0 справедливо неравенство , где M x и D x — математическое ожидание и дисперсия случайной величины x .

Теорема Бернулли. Пусть m n — число успехов в n испытаниях Бернулли и p — вероятность успеха в отдельном испытании. Тогда при любом e > 0 справедливо .

Центральная предельная теорема. Если случайные величины x 1, x 2, …, x n, … попарно независимы, одинаково распределены и имеют конечную дисперсию, то при n ® равномерно по x (- , )

.

Закон больших чисел. Если случайные величины x 1, x 2, …, x n, … попарно независимы и ,то для любого e > 0

.

Теорема Ляпунова. Пусть x 1, x 2, …, x n, …- неограниченная последовательность независимых случайных величин с математическими ожиданиями m1, m2, …, mn, … и дисперсиями s 1 2 , s 2 2 , …, s n 2 … . Обозначим , , ,.

Тогда = Ф( b ) — Ф( a ) для любых действительных чисел a и b , где Ф(x) — функция распределения нормального закона.

old.exponenta.ru

Закон больших чисел Чебышева.

ЗАКОНЫ БОЛЬШИХ ЧИСЕЛ.

Смысл закона больших чисел Чебышева состоит в следующем.

В то время как отдельная случайная величина может принимать значения, очень далекие от своего математического ожидания, средняя арифметическая большого числа случайных величин с вероятностью, близкой к единице, принимает значение, мало отличающееся от среднего арифметического их математических ожиданий.

Частный случай закона больших чисел Чебышева можно сформулировать так.

Средняя арифметическая попарно независимых случайных величин , имеющих ограниченные в совокупности дисперсии и одинаковые математические ожидания , сходится по вероятности к а.

То есть, если число измерений достаточно велико, то с практической достоверностью можно утверждать, что каково бы ни было , средняя арифметическая результатов измерений отличается от истинного значения аменьше, чем на .

Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом числе опытов частота появления события А как угодно мало отличается от его вероятности, т. е.

иными словами, при неограниченном увеличении числа n опытов частота m/n события А сходится по вероятности к Р(А).

1. Леммы Чебышева.

2. Закон больших чисел Чебышева.

3. Частный случай закона больших чисел Чебышева.

4. Закон больших чисел Бернулли.

1. Леммы Чебышева.

В этом пункте докажем следующие две леммы, принадлежащие Чебышеву.

Лемма 1. Пусть — случайная величина, принимающая только неотрицательные значения; тогда

Доказательство:Для простоты докажем это утверждение для дискретной случайной величины , принимающей значения x1, x2, . xn, при условии . По аксиоме сложения вероятностей имеем

где суммирование распространено на все значения xi, большие или равные единице. Но для , очевидно,

(50)

Последняя сумма распространена на все значения xi, принимаемые случайной ветчиной . Но эта сумма по определению равна математическому ожиданию:

Сопоставляя соотношения (50) и (51), имеем

Тем самым лемма доказана.

Лемма 2. Пусть — случайная величина, а — положительное число. Тогда вероятность того, что модуль отклонения случайной величины от ее математического ожидания окажется меньше, чем , больше или равна разности

(52)

Неравенство (52) называется неравенством Чебышева.

Доказательство: Рассмотрим сначала неравенство . Так как оно равносильно неравенству то

Случайная величина неотрицательна и, значит, удовлетворяет условиям первой леммы Чебышева. Следовательно,

так как .

(53)

Так как событие, выражаемое неравенством , противоположно событию, выражаемому неравенством , то

Принимая во внимание соотношение (53), окончательно получим

Закон больших чисел Чебышева.

Имеет место следующее утверждение.

Пусть — последовательность попарно независимых случайных величин, имеющих ограниченные в совокупности дисперсии, т. е. для любого i. Тогда, каково бы ни было , справедливо соотношение

(54)

Доказательство: Обозначим через величину , т.е. среднюю арифметическую n случайных величин. Случайная величина имеет математическое ожидание

(здесь мы воспользовались свойствами математического ожидания и дисперсии). Применяя к случайной величине вторую лемму Чебышева, найдем, что

так как при любом i и, следовательно,

Учитывая, что вероятность любого события не превосходит единицы, получим

Переходя к пределу при , имеем

Смысл закона больших чисел Чебышева состоит в следующем.

В то время как отдельная случайная величина может принимать значения, очень далекие от своего математического ожидания, средняя арифметическая большого числа случайных величин с вероятностью, близкой к единице, принимает значение, мало отличающееся от среднего арифметического их математических ожиданий.

Дата добавления: 2017-02-13 ; просмотров: 610 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

poznayka.org

Законы больших чисел чебышева

Часть 1. Фундамент прикладной статистики

1.4.1. Законы больших чисел

Законы больших чисел позволяют описать поведение сумм случайных величин. Примером является следующий результат, обобщающий полученный ранее в подразделе 1.2.2. Там было доказано следующее утверждение.

Теорема Чебышёва. Пусть случайные величины Х1, Х2,…, Хk попарно независимы и существует число С такое, что D(Xi) 0,

(3)

С точки зрения прикладной статистики ограниченность дисперсий вполне естественна. Она вытекает, например, из ограниченности диапазона изменения практически всех величин, используемых при реальных расчетах.

В 1923 г. А.Я. Хинчин показал, что если случайные величины не только независимы, но и одинаково распределены, то существование у них математического ожидания является необходимым и достаточным условием для применимости закона больших чисел [2, с.150].

Теорема [2, с.150-151]. Для того чтобы для последовательности Х1, Х2,…, Хk ,…(как угодно зависимых) случайных величин при любом положительном ε выполнялось соотношение (3), необходимо и достаточно, чтобы при n → ∞

Законы больших чисел для случайных величин служат основой для аналогичных утверждений для случайных элементов в пространствах более сложной природы. В частности, в пространствах произвольной природы (см. подраздел 2.1.5 далее). Однако здесь мы ограничимся классическими формулировками, служащими основой для современной прикладной статистики.

Смысл классических законов больших чисел состоит в том, что выборочное среднее арифметическое независимых одинаково распределенных случайных величин приближается (сходится ) к математическому ожиданию этих величин. Другими словами, выборочные средние сходятся к теоретическому среднему.

Это утверждение справедливо и для других видов средних. Например, выборочная медиана сходится к теоретической медиане. Это утверждение – тоже закон больших чисел, но не классический.

Существенным продвижением в теории вероятностей во второй половине ХХ в. явилось введение средних величин в пространствах произвольной природы и получение для них законов больших чисел, т.е. утверждений, состоящих в том, что эмпирические (т.е. выборочные )средние сходятся к теоретическим средним. Эти результаты будут рассмотрены в подразделе 2.1.5 ниже.

www.aup.ru

Популярное:

  • Гибдд рязань проверка штрафов Штрафы гаи беларусь 2014 21.06.2014 | автор: AYNUR1 | Штрафы гибдд мопеды | Просмотров: 283 Быстрая загрузка: Штрафы гаи беларусь 2014 Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы […]
  • Ломоносовская школа учебные пособия Ломоносовская школа: как подготовиться Ломоносовская частная школа – это стабильное, безопасное, динамично развивающееся негосударственное общеобразовательное учреждение. Прочно занимает лидирующие позиции на рынке […]
  • Суды адреса чебоксары Суды города Чебоксары Вас вызвали в суд или наоборот хотите подать в суд, но не знаете где находятся суды в г.Чебоксары или не знаете как до суда доехать? Специально для вас мы подготовили список судов Чебоксар: Верховный суд, […]
  • Коллектор в бурении-это Коллектор в бурении-это Горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Основными классификационными признаками коллектора являются условия фильтрации и аккумуляции в них […]
  • Экспертиза образовательной среды в школе Методика диагностики организационной культуры школы > Диагностика отношения к школе > 5 Методика диагностики отношения к школе > Экспертное заключение 2 3.3. ЭКСПЕРТИЗА ОБРАЗОВАТЕЛЬНОЙ СРЕДЫ Образовательная среда рассматривается […]
  • Найти плотность распределения нормального закона Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию. § 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 5. Нормальное распределение. Говорят, что случайная величина нормально распределена или подчиняется закону распределения Гаусса, […]
  • Правило тренажер славянский Правило тренажер славянский древности, как известно из истории, славяне всегда заботились о тренировке тела и духа, учили человека слушать и чувствовать свою плоть. И эта древняя славянская традиция была положена в основу […]
  • Правило понятие дроби Правило понятие дроби На рисунке круг разделен на две равные части. Равные части называют долями. Название долей зависит от того, на сколько равных частей разделена одна целая (единица) или предмет, принимаемый нами за […]